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3.2 Machine physics

3.2.1 Beam Injection
The accelerated beam from the booster is injected into the main storage ring. The output
current from the booster is given by the demand to fill the CANDLE storage ring within
one minute to the mean current of 350 mA. Taking into account the booster synchrotron
repetition rate of 2 Hz and the particle revolution time of 720 ns in storage ring the output
current from the booster should be
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Considering some losses in the whole injection chain, the linac output current of 10-15 mA
will be more than sufficient. The injection scheme is the straightforward multi-turn
injection. The ring acceptance is bumped so that the part of the acceptance is spaced out of
the injection septum where the incoming beam from booster is injected. After the proper
injection of the beam pulse the bump is switched off and the coherent oscillations of the
injected beam are damped in successive number of turns due to radiation damping of
oscillations. After a few damping times (storage ring horizontal radiation damping time is
3.8 ms) the beam bump switches on and the next pulse from the booster can be injected.
The components of the transfer line between the booster and storage ring that includes the
last septum are adjusted for exact matching of the geometrical and optical parameters of
the incoming beam with storage ring lattice parameters. The injection is performed in a
horizontal plane and the matching at the septum output is done for transverse amplitude
functions βα ,  and horizontal dispersion functions ηη ′, .
In the preliminary version, the injection scheme with the arrangement of septum magnets
in one of long straight section and with kickers locations between two sextupoles in
neighbor arc sections was studied in detail. The main disadvantages of this option are the
complicated and unbalanced closed orbit bump amplitude due to non-linearities of
sextupole fields. The optimization of the injection bump leads to a scheme with four kicker
magnets located in one long straight section of the storage ring. Although this option
implies relatively strong kicker field, the clear advantage is that created bump is
independent of the values of beta function at the injection point. Injection into the storage
ring takes place in a long straight section from the internal side of the storage ring, in
horizontal phase space.
Fig. 3.2.1 shows schematically the injection system and the bumped orbit. Four bump
magnets produce a closed bump with the deflection of 12 mm at the septum output. The
injection thin septum (septum thickness is 2mm) is located at the distance of 14 mm from
the reference orbit thus 10 mm of horizontal acceptance is available for the capture of the
injected beam.
Two septum magnets, a thin with deflection angle of 3o and a thicker one with deflection
angle of 8o are used to produce the final deflection of the incoming beam from booster to
the machine bumped closed orbit. The comparatively large deflection angle of thick
septum is chosen to keep the beam pipe far from the nearest kicker, as well as to allow
comfortable disposition of the third dipole magnet in booster-to-storage ring transfer line.
The length of storage ring straight section is 4.8 m. The bump magnets are capable of
displacing the orbit by up to 12 mm. This orbit offset corresponds to the kick angle about
12 mrad for each bump magnet. The radial position of the thin injection septum is
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adjustable in order to produce the best match to the dynamic aperture. Table 3.2.1 lists the
main characteristics of the injection system.

Table 3.2.1 Storage ring injection parameters.

Energy  (GeV) 3
Stored beam emittance ( radnm⋅ ) 8.4
Injected beam emittance  ( radnm⋅ ) 74.9
Injected beam number of sigmas 3
Distance of injected beam to septum (mm) 3
Beta at injection point  (m) 7.89
Effective septum thickness (mm) 3
Orbit displacement at septum  (mm) 12

An extracted from the booster electron beam has the horizontal emittance of 75 radnm⋅
and the rms energy spread of 6.7 ⋅10-4. The electron beam delivered by booster-to-storage
ring (BTS) transfer line has the transverse dimensions of 2.4mm in horizontal and 0.3mm
in vertical planes for 3σ  beam size at the entrance of injection thick septum. This
compensates the most stringent demands on storage ring injection scheme coming from the
relatively short length of straight section and dense arrangement of injection elements.

Fig.3.2.1 The scheme of injection system and bumped orbit.

The horizontal half-aperture needed to accommodate injection is 22 mm, while the half
aperture of vacuum chamber is 37 mm. To correctly estimate the injection acceptance, the
booster horizontal beam size has been taken at 3σ  and 1% coupling. 3 mm effective
septum thickness has been used to take into account power supply jitter and misalignments.
The reduction of horizontal aperture by the septum magnet results in 13 mradmm⋅ of
dynamic acceptance that, in turn, limits the momentum acceptance by about 3.2%. The
Touschek lifetime strongly depends on the momentum acceptance of the lattice, which can
be limited either longitudinally (by the RF or dynamic acceptance) or transversely (by the
physical or the dynamic acceptance). For CANDLE storage ring lattice the limit on
momentum acceptance set by RF is of the order of 2.4%. Thus, there is no real loss in
beam Touschek lifetime due to reduction of dynamic acceptance caused by septum
position.
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Fig. 3.2.2The bumped acceptance, stored and injected beams. Shown are the
dynamics at the injection start, after the first and the second turns in the
storage ring.
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Figure 3.2.2 (top) shows the positions of closed orbit and the injected beam at the output of
the septum magnet. It can be seen that the injected beam fits well within the acceptance of
the ring. The evolution of the bumped acceptance and the injected beam coherent
oscillations after one and two turns is shown in Fig. 3.2.2 (bottom). The kicker magnet
field rise time is set 2sµ , which is less than three beam turns in the ring (the revolution
time is 0.72 sµ ). The bump magnets are then turned off in a time corresponding to about
three orbits of the ring to prevent the injected particle loss due to colliding with the septum.
Thus, the injection scheme is capable of operating both in single-turn and in multi-turn
regime. The newly injected beam then undergoes coherent betatron motion about the
closed orbit- motion that is rapidly damped by means of synchrotron radiation with
damping time of 3.8 ms. This process is repeated at the booster cycle rate of 2Hz until the
desired beam current of 350mA is stored in the storage ring.
The main parameters of bump magnets and injection septa are summarized in Table 3.2.2.
The detailed description of the injection system magnets is given in Section 3.7.

Table 3.2.2 Main parameters of storage ring injection magnets.

Thick septum Thin septum Bump magnets
Length,  (m) 1.2 0.5 0.4
Bend angle (deg) 8 3 0.687
Magnetic field (T) 1.14 1.01 0.3
Rise/Fall time half-sine100sµ half-sine30 sµ half-sine2 sµ

3.2.2 Misalignment and Field Errors

Third-generation light sources are characterized by an increased emphasis on the quality of
the emitted photon beam, expressed in terms of its spectral brightness. High photon
brightness implies a low emittance of electron beam. In order to achieve low emittance the
dispersion and horizontal beta function at the bending magnet location must be small,
which means the use of strong focusing optics. Strong focusing optics, in turn, requires
strong chromaticity correction sextupoles and increase sensitivity to quadrupole
misalignment and movement. Another aspect of limitations arises from the user demands
on long time photon beam orbit stability at the level of less than 10% of photon beam spot
size. This requirement is especially stringent in the vertical plane, where the source size is
very small. All these effects lead to very small tolerances with a fraction of millimeter as a
closed orbit error. It is obvious that in third-generation light sources the magnetic lattice
design needs more careful alignment, stabilization and corrections.
In real machines the closed orbit results not only from the ideal magnet lattice but also
from field errors arising from magnetic element positioning errors. The magnetic elements
can be positioned only with a finite alignment precision of about 0.1 mm. Even if one
could align the magnetic elements precisely on the ideal closed orbit, this position would
change with time due to ground movements and vibrations. The most severe effects comes
from the misalignment of quadrupole magnets, where the resulting error dipole field is
proportional to both gradient and alignment error.
The components in iron-dominated magnets arise because the poles have finite dimensions
to accommodate the excitation windings and are constructed using finite tolerances. The
first constraint leads to systematic multipole components (the same in all magnets of the
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same type), the second leads to both normal and skew components with random
amplitudes. Random multiple errors are introduced by magnet assembly imperfections that
vary from magnet to magnet. The main effect of multiple field errors in case of
unperturbed machine is the reduction of dynamic aperture.
The sensitivity of the CANDLE storage ring magnetic system to alignment errors has been
investigated using the program MAD [1]. The systematic field errors for storage ring
magnets as computed by the program POISON [2] are presented in Table 3.2.3.

Table 3.2.3 Systematic multiple field components

Magnet Multiple order Radius (mm) BBn /∆
Dipole 2 22 1.0 x10-4

Quadrupole 6 32.5 3.2 x10-4

Quadrupole 10 32.5 3.8 x10-4

Quadrupole 14 32.5 1.0 x10-3

Sextupole 9 30 3.5 x10-3

Sextupole 15 30 1.5 x10-3

The random components coming from construction tolerances are different for each
magnet and are present in principle at all orders. Table 3.2.4 lists the multiple components
and their rms strengths, which are considered the most likely to occur actually.

Table 3.2.4 Random multiple field errors

Multiple order Dipole, BBn /∆ Quadrupole, GGn /∆
1 10-5 10-5

2 10-4 10-5

3 10-5 10-5

4 10-5 10-5

5 0.0 10-5

9 0.0 10-7

The results of tracking simulations are shown in Fig 3.2.3 and Fig 3.2.4. Fig 3.2.3 presents
the dynamic aperture in the presence of multipole errors. It is seen that the main effect of
the errors is observed in the radial plane, where the aperture was reduced from 23 mm to
15mm. This value of dynamic aperture is quite sufficient both for injection and for an
acceptable beam lifetime. The analysis of dynamic aperture sensitivity to a particular
multipole component shows that the random gradient error in the dipole magnet is the most
harmful component.
Fig 3.2.4 shows the dynamic aperture of unperturbed machine in comparison with the
presence of misalignments before and after the correction, respectively. We found that
after the correction, no essential dynamic aperture reduction is observed with alignment
errors at the level of 0.1 mm.
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Fig 3.2.3 Dynamic aperture reduction due to random multiple errors.

Fig.3.2.4 Dynamic apertures of the ring: ideal, misaligned and corrected.

To study the effects of magnet misalignments, errors were randomly distributed around the
storage ring lattice and the statistics was compiled for the closed orbit distortions. Typical
examples of closed orbit distortion (COD) for the horizontal and vertical planes are shown
in Fig.3.2.5 and Fig 3.2.6 respectively.
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Fig.3.2.5 Horizontal COD due to random magnet errors (before correction).

Fig.3.2.6 Vertical COD due to random magnet errors (before correction).

Single orbit can have local displacement of up to 6 mm in horizontal plane and 4 mm in
vertical plane. The expectation value for the closed orbit rms distortion in horizontal and
vertical planes are 2.7 mm and 2.1 mm respectively (see Fig.3.2.7).

Fig.3.2.7 The rms COD produced by ten sets of random errors before correction.
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Since the exact alignment position of each magnet is not known, it has become normal
practice to describe the problem with using the statistical method. The computed amplitude
of the average closed orbit with the amplification factor of about 26 is in good agreement
with these that estimated using the standard formula for random distribution of quadrupole
displacements with an rms value uσ  [3]:

 uAssu σβ ⋅⋅=>< 2
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2
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Here )(0 su  is the expectation value for the orbit distortion, )(sβ  is the beta function at

observation point, uσ  is the standard rms deviation of errors; k  is the quadrupole strength,

l  is the quadrupole length, kβ  is the beta function in the quadrupoles, N  is the number of
magnets in quadrupole family.

3.2.3 Closed Orbit Correction
Closed orbit distortions (COD) are generated mainly by quadrupole displacement errors
and dipole field errors. In estimating the COD, we have taken alignment tolerances and
field errors presented in the Table 3.2.5. The simulation of ten sets of the alignment errors
has been carried out under the assumption of Gaussian distributions of errors with rms
values given in Table 3.2.5. The truncation error of 2.5σ  was used in tracking simulations.
Since the combined function dipole magnet with quadrupole field is adopted for CANDLE
lattice, the dipole alignment tolerances are taken of the same order as the ones used for
quadrupoles.

Table 3.2.5 Local magnet alignment tolerances.

Magnet Dipole Quadrupole Sextupole
Horizontal rms displacement  (mm) 0.1 0.1 0.1
Vertical rms displacement  (mm) 0.1 0.1 0.1
Tilt rms angle   (mrad) 0.5 0.5 0.5

Closed orbit tracking simulations and correction procedure were done using the program
MAD [1], where the correction is performed by subroutine program MICADO [4] using an
iterative method based on the least square minimization theory.
The disturbed closed orbit has been calculated and “measured” by 80 beam position
monitors (BPM) distributed around the storage ring (Fig. 3.2.8).

Fig 3.2.8 BPMs and correctors distribution per magnetic cell.
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The BPMs are placed at the crucial points close to the quadrupoles and sextupoles, where
misalignments serve as sources for orbit distortion and dynamic aperture reduction, and at
the end of each insertion straight section in order to provide local closed orbit adjustment.
Distributions of the corresponding rms values of the orbit distortions after the correction
are shown in Fig.3.2.9. The most efficient correction is obtained when the correctors are
located as close as possible to the sources generating the largest orbit deviation, i.e. the
quadrupoles.

Fig.3.2.9 Calculated rms closed orbit distortion produced by ten sets of random
errors (after correction).

The storage ring has 64 corrector magnets in total: 32 with combined function for
correction in both horizontal and vertical planes, 16 horizontal and 16 vertical correctors.
Their arrangement over one period of the lattice is shown in Fig. 3.2.8. The combined
function corrector strengths for one typical random set of quadrupole alignment are
presented in Table 3.2.6. The beta functions in the location of the correctors are xβ = 6.9m

and yβ = 7.2m respectively.

Table 3.2.6 Combined function corrector strengths.

Corrector Position
(m)

Hor.correct.
(mrad)

Vert.Correct.
(mrad)

Corrector Position
(m)

Hor. orrect.
(mrad)

Vert.Correct.
(mrad)

KHV1 2.78 0.073011 -0.03048 KHV17 110.78 -0.08235 0.066597
KHV2 10.72 -0.01342 0.128725 KHV18 118.72 -0.03124 -0.08468
KHV3 16.28 -0.06589 -0.02105 KHV19 124.28 -0.07247 0.03859
KHV4 24.22 -0.06005 -0.01763 KHV20 132.22 -0.07399 -0.04444
KHV5 29.78 -0.1643 -0.04434 KHV21 137.78 -0.12601 0.182954
KHV6 37.72 -0.09436 -0.08575 KHV22 145.72 -0.03217 -0.00195
KHV7 43.28 0.055827 -0.03046 KHV23 151.28 -0.02 -0.17885
KHV8 51.22 0.023113 0.009324 KHV24 159.22 -0.02486 -0.07861
KHV9 56.78 -0.00199 -0.07109 KHV25 164.78 -0.11795 -0.00499

KHV10 64.72 -0.1391 -0.02511 KHV26 172.72 -0.11753 0.110748
KHV11 70.28 -0.05856 -0.06396 KHV27 178.28 0.081448 0.086518
KHV12 78.22 -0.03746 -0.03409 KHV28 186.22 -0.06893 0.099246
KHV13 83.78 -0.04849 -0.00403 KHV29 191.78 0.128714 0.045241
KHV14 91.72 -0.15947 -0.00201 KHV30 199.72 -0.09226 -0.1263
KHV15 97.28 -0.01711 0.069763 KHV31 205.28 0.133158 0.029819
KHV16 105.22 -0.00352 0.052999 KHV32 213.22 -0.15518 0.057684
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Fig. 3.2.10 and Fig. 3.2.11 show the results of closed orbit correction for one particular set
of errors with the BPM’s rms misalignment of 0.1 mm. Since the rms momentum spread in
the beam is of 10-4 order, the resulting increase in beam size of 4mµ  is negligibly small in
comparison with the natural beam rms size.
The overall correction method gives good results in both planes by letting the rms closed
orbit to be reduced by factor of about 30 with corrector strengths that are easily obtained
by means of combined function horizontal/vertical correctors. Given results were achieved
after the 2-3 iterations using possible small amount of correctors.

Fig. 3.2.10 Horizontal closed orbit residual distortion after correction.

Fig. 3.2.11 Vertical closed orbit residual distortion after correction.

3.2.4 Coupling and Correction

The vertical beam size in the storage ring is determined by the coupling of horizontal
betatron oscillations and by vertical dispersion. The coupling is generated due to
quadrupole magnet roll misalignments and due to vertical closed orbit offset with the
magnetic center of sextupoles. Vertical bending, which causes vertical dispersion, arises
from the dipole roll, vertical quadrupole displacement and vertical orbit steering magnets.
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As it was mentioned above, one cell of magnetic lattice will contain five BPMs and four
corrector magnets, two of which are of combined type for focusing in both transverse
planes, resulting in three correctors per cell for each plane. The corrector magnets will be
installed between the doublet quadrupoles and between the sextupole magnets in
dispersion section, where there is enough space for their installation.
 The CANDLE orbit control system will be based on a singular value decomposition
(SVD) control algorithm. This system produces reliable global orbit correction, local orbit
adjustments and photon beam steering. In our simulations for coupled optics we use the
Matlab based accelerator toolbox AT [5], which provides a wide range of high-level
simulation options ranging from 6-D symplectic tracking to perform the calculations of
closed orbit and coupled optics. In AT the coupled optic simulation is based on the
formalism [6,7] of decomposition of full-turn transfer matrix in the form:
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where matrixes A and B  are interpreted as the Twiss matrixes of normal modes and the
matrix  C  describes the coupling. For weak coupling systems the elements of coupling
matrix C  and mixing parameter γ  characterize the coupling of horizontal and vertical
motions so that the coupling coefficient can be approximately presented as
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where one has to take averaging over the ring. Fig. 3.2.12 gives the evaluation of elements
of coupling matrix along the storage ring. The coupling is generated by the quadrupoles
with the tilt random rms errors of 0.5 mrad.

Fig. 3.2.12 Elements of coupling matrix (top) and mixing parameter.
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Putting approximately 36≈⋅ yx ββ  and taking into account Fig.3.2.12, the coupling

coefficient is estimated at the level of 6.1≈k %. This value is quite acceptable to keep the
optimum machine operation performances and does not require special coupling correction
scheme. However, additional dipole windings are foreseen in some of sextupoles, which
will be used for fine-tuning of the orbit at the insertion devices.
The orbit response matrix measures the change in the transverse orbit position caused by a
transverse kick. The response matrix can be measured in a real machine or computed with
an accelerator code. A popular technique for linear optics determination fits the parameters
in the model, such as K-values of quadrupoles, corrector gains, and BPM errors, to
minimize the difference between the measured and the model response matrix. Program
AT uses easily Matlab’s capability of matrix manipulation to solve SVD problem for
parameter fitting. The response matrix in AT is represented in the form:

R=
VVVH

HVHH
;   (3.2.7)

whereHH  is the horizontal BPM response to horizontal orbit kick,HV  is the horizontal
BPM response to vertical orbit kick, VH  is vertical BPM response to horizontal orbit kick,
VV  is the vertical BPM response to vertical orbit kick.  The response matrixes are shown
in Fig.3.2.13a-c: a) for the ideal machine (without coupling), b) in case of weak coupling
generated by magnets random misalignments with    the rms random error 0.1mm and c) in
case of coupling caused by inclusion of the random tilts in all quadrupole families with rms
value of 0.5 mrad.

Fig. 3.2.13  Storage ring response matrix in case of a) ideal machine, b) weak coupling
and c) including quadrupole tilt errors.
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In the figure the normalized closed orbit distortion σ∆∆ /x  is depicted in the vertical axis
with x∆  the absolute closed orbit distortion and σ∆  the value of misalignment error.
Recent advances in developing an interactive orbit control program at SSRL [8], the usage
of Matlab for orbit control applications in storage rings take advantage of easy-to-use
mathematical and graphics routines of Matlab and makes more promising. We are going to
widely implement this technique in CANDLE machine control and diagnostic system.

3.2.5 Effects of Insertion Devices

Optical effects.
Insertion devices are the indispensable part of third generation light sources. With the
installation of insertion devices (ID’s) into the ring one expects to observe three main
classes of perturbations to the beam:

• closed orbit distortion;
• tune shifts and betatron beat;
• reduction of dynamic aperture.

The closed orbit distortion is induced by the field and positioning errors of the magnets. A
modern technology of proper shimming and high precision alignment ensure a negligible
closed orbit distortion due to installation of insertion devices. In this concern the basic
requirement of an ID is that the beam will return to its nominal orbit after passing through
the insertion device. In the first order, taking the field distribution symmetric around the
device midpoint and adjusting the integral field to zero fulfill this requirement, so
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Usually it is achieved by equipping the ID with reduced field or reduced length end poles
of the same type like the central ones.
In general the perturbations induced by the presence of insertion devices may be divided
into two classes. Firstly there are effects coming from magnetic field influence resulting in
distortion of the linear optics, tune shifts, excitation of resonance’s, reduction of the
dynamic aperture. The second group of insertion devices effects are connected with the
beam emitted radiation in the ID, which cause changes in the emittance and energy spread
of the beam. Most of the effects of IDs are detrimental to the machine performance and
must be compensated. But in some cases the radiation effects can be used as an advantage
for emittance reduction.
The present CANDLE lattice design consists of 16 identical straight sections 12 of which
are available for IDs. Each straight section has 4.8 m length with 4m available for the
installation of ID. Because the CANDLE beam emittance is larger than the diffraction
limited emittance for the expected photon wavelength range, we find the lattice optical
functions in the middle of straight section to be optimal with horizontal beta 7.9 m and
vertical beta 4.87m that provide a good performance for both machine reliability and high
spectral brightness of the radiated photon [9].
The primary CANDLE beamlines will be based on conventional permanent magnet planar
insertion devices [10]. In Table 3.2.7 the basic parameters of primary insertion devices are
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summarized. There is a conventional planar wiggler and two undulators incorporated in the
lattice design to cover the radiated photon spectrum in the range of 0.1 - 30 keV. Such
devices with very similar parameters are widely used in many SR world centers with good
performance and reliable operation [11, 12]. All three devices have conventional   in-air
gap permanent magnet structure.

Table 3.2.7 CANDLE insertion devices parameters

Insertion Devices Wiggler I Undulator I Undulator II
Period   length, m 0.17 0.022 0.05
Number of periods 23 72 79
Magnetic field, T 1.98 0.7 0.3
K-value 32 1.43 1.4
Gap height, mm 18 5.6 24

In this section we present the results of linear effects of these IDs on electron beam
parameters and storage ring optics based on the analytical approach developed in [13]. The
studies of the influence of ID on beam dynamic aperture and tracking simulations were
done with the computer code OPA [14].
The components of the insertion device magnetic field used for the derivation of equation
of motion are as follows:

)cos()sinh()sinh()/( 0 ksykxkBkkB yxyxx = ;

)cos()cosh()cosh(0 ksykxkBB yxy = ; (3.2.9)
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where λ  is the period length of the ID and 0B  is its peak magnetic field. The equation of
motion contains a linear term, the effect of which is equivalent to that of horizontally and
vertically focusing quadrupole whose strengths are given by:
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For the chosen planar insertion devices 0=xk  and the focusing effect is present only in
the vertical plane. The corresponding tune shifts can be calculated by the formula:
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The linear effects of IDs are proportional to the ratio 2)( E
B  (with B - magnetic field and

E - beam energy) and to the averaged vertical beta at their locations. Therefore, the linear
effects are more dominant in case of high field wigglers.
The main optical effects of CANDLE insertion devices (for single device) are summarized
in Table 3.2.8.

Table 3.2.8 Main optical  effects of IDs .

Insertion device Wiggler I Undulator I Undulator II
)(mIDρ 5.05 14.3 33.3

yQ∆ 0.063 0.032 0.0015

(%)
y

y

β
β∆ 39.6 1.99 0.92

The parameters in Table 3.2.8 are the bending radius in insertion device IDρ , the linear

vertical tune shift yQ∆  and the maximum beta-beat ββ /∆ . Table 3.2.8 shows that the

Wiggler I with the highest magnetic field of 1.98 T causes the main effects. In particular,
the total tune shift drives the working point closer to the third order resonance line in
resonance diagram. It also causes large value beta-beating. So, local correction of tunes
and betatron function in case of operation of strong wiggler is mandatory. These effects are
acceptable for the moderate field wiggler and undulator magnets.
As it was expected high field devices present stronger linear distortions than those with
lower fields and shorter periods. In Fig.3.2.14 the modulated beta function produced by
Wiggler I (which introduced comparatively big beta-beating) is shown in comparison with
the bare lattice. Note, that the horizontal beta is un-effected by ID.

Fig. 3.2.14 Beta-beating for the storage ring lattice occupied by Wiggler I.

Synchrotron radiation and quantum excitation in wigglers increase the beam energy loss
and change the equilibrium emittance and the beam energy spread. For the storage ring
lattice without insertion devices the equilibrium emittance and the energy spread are:
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integrals. In the presence of a single ID the formulas (3.2.14) and (3.2.15) are read as:
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where the terms introduced by the ID are:
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The additional IDi4  and IDi5  terms correspond to the contributions arising from the small

dispersion m18.00 =η  in the straight sections.
The relative change of energy loss due to the radiation in the presence of insertion devices
can be calculated by:
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−
;   (3.2.18)

where 0ρ =7.385m is the radius of curvature in the main dipoles.
Table 3.2.9 lists the radiation effects of individual IDs. As it is seen from Table 3.2.9, the
radiation effects of Undulator I and Undulator II on beam emittance and energy spread are
positive. Wiggler I, in contrary, increases the emittance and the energy spread. In case of
machine full occupation by undulators, the horizontal emittance is reduced from 8.4 nm-
rad to 8.1 nm-rad .

Table 3.2.9 Main radiation effects of IDs.

Insertion device Wiggler I Undulator I Undulator II
Relative energy loss (%)

0

0

U

UU − 9 0.46 0.21

Relative energy spread (%)0

0

E

EE

σ
σσ − 0.16 -0.17 -0.11

Relative emittance change (%)
x

x

ε
ε∆ 0.56 -0.21 -0.13
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These conclusions are confirmed by Fig. 3.2.15, which shows the emittance behavior as a
function of the insertion device field for Undulator I (a) and Wiggler I (b) magnets. The
effect to energy spread is similar to the effect on the beam emittance. The change in energy
spread depends on the ratio of the magnetic field in the insertion device to that in the
bending magnet. Except for low fields, there is an increase in the beam energy spread (as
shown in Fig. 3.2.16 for Undulator I (a) and Wiggler I (b) magnets.

Fig. 3.2.15 Emittance dependence on the Undulator I (a) and Wiggler I (b) field.

Fig.3.2.16 Energy spread dependence on Undulator I (a) and Wiggler I (b) field.

From the formula (3.2.16) one can obtain the condition under which beam emittance is
unperturbed or is reduced [15]:

><
⋅≤

β
ε

λ 3
92 01087.5

B

E x
; (3.2.19)

where E  is beam energy in GeV and B  is ID field in Tesla. The beam emittance is reduce
if the period of the insertion device is below the value determined by the equation. For the
IDs under consideration the transition point between the regions where emittance grows
and where it reduces corresponds to the magnetic field value of TBID 2.1≈ .
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Effects on dynamic aperture and lifetime.
The additional linear and non-linear effects applied by IDs may bring to the decrease of the
dynamic aperture and affect the beam lifetime limiting. In Figure 3.2.15 the dynamic
aperture simulations (vs sextupole aperture) obtained by computer code OPA are presented
in case of bare lattice (solid line) and in case of Wiggler I in operation (dashed line). In
computer code OPA the insertion device periodic field is implemented as a series of
alternating sign dipole array:

Undulator (one period) ⇒  B+ O B- B- O B+

with the dipole field 4/0 π⋅= BBD ; the dipole length 2
0 /4 πλ ⋅=DL ; and the distance

between the poles DLD −= 2/0λ ; where 0B  and 0λ  are the insertion device on-axis
magnetic field and the period length respectively. This model provides very adequate beam
trajectory and other optical characteristics. As Fig.3.2.17-18 show for the chosen planar
devices the dynamic aperture reduction is observed only in periphery part of stability
region.

Fig.3.2.17. Dynamic aperture for the bare lattice (solid line)  and including Wiggler I
(dashed line).

Fig.3.2.18. Dynamic aperture for the bare lattice (solid line) and including Undulator
I (dashed line).
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The above mentioned linear and non-linear fields of IDs will also produce beam lifetime
limitations via reduction of dynamic aperture with coupe of small gap. For the intermediate
energy rings like CANDLE the Touschek lifetime limitation is dominant. In Fig. 3.2.19 the
Touschek lifetime is plotted depending on longitudinal coordinate for the parameter value:
total accelerating voltage 3.3 MV and 2.4% momentum acceptance assuming 1%
emittance coupling. One can see the average Touschek lifetime reduction from 36.8 hour
to 34.5 hour (one Wiggler I in operation). In the pessimistic scenario when all the straight
sections are accommodated with the Wiggler I type insertion device the lifetime of the
electron beam is reduced to 21 hours.

Fig. 3.2.19 Touschek lifetime vs longitudinal coordinate for bare lattice (solid line)
and including Wiggler I (dashed line).

The simulations performed for the storage ring with the Undulator I and Undulator II in
use show the comparatively small beam lifetime reductions. For the case when all the
straight sections are loaded by insertion devices the maintainance of the sufficient
Touschek lifetime of 27 hours will require the total accelerating voltage of 3.3 MV. The
lifetime calculations have shown that the vertical gap of insertion devices less than 10 mm
should then be possible with 350 mA beam current in multibunch mode and 3.3 MV total
accelerating voltage.

                 

Fig. 3.2.20  Closed orbit distortion.
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Fig. 3.2.20 presents the geometrical aperture (solid line), the closed orbit distortion (dot-
and-dashed line) and the boundary of the horizontal dynamic aperture (dashed line) in the
middle of the straight section with Wiggler I in operation. The comparison with the similar
plot for bare lattice indicates no closed orbit distortion caused by insertion devices. The
small closed orbit deviation in horizontal plane (Fig.3.2.20) is the result of small non-zero
dispersion (0.18m) at the straight section.

3.2.6 Nonlinear Effects
Besides the linear terms, the equations of particle motion in real insertion devices contain
also a nonlinear part the effect of which comes from an octupole-like term. In horizontal
plane, the non-vanishing term is the oscillating field along the ID, the average contribution
of which is zero. In the vertical plane the first non-linear wiggler effect comes from the
octupole like field, which generate quadratically increasing vertical amplitude dependent
tune shift:
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The non-linear effects are proportional to the ratio 2)( λE
B  and therefore are more severe

in case of small period undulator. Analytic calculations of the amplitude tune shifts for all
three insertion devices have been performed. The results are presented in the Table 3.2.10
where we have taken y= 5mm, my 49.7=β  and radnmy .104.8 2−⋅=ε .

Table 3.2.10 Nonlinear tune shifts from ID fields .

Insertion device Wiggler I Undulator I Undulator II
oct
yQ∆ [10-8] 3.73 11 1.0

As it is seen from Table 3.2.10, the nonlinear effects arising from octupole-like field of IDs
are negligible due to very small vertical beam emittance in the storage ring.
It can be expected that non-linear fields can produce significant effects at large betatron
amplitude. These betatron phase distortions break the periodicity of beta functions and the
phase advance between sextupoles, which can lead to stronger sextupole resonances and
reduction of dynamic aperture. The wiggler focusing effect should be compensated locally
by utilizing four pairs of quadrupoles located symmetrically about the device.
In Fig. 3.2.21 and Fig. 3.2.22 the dynamic aperture reduction due to IDs non-linearities are
presented as a result of direct symplectic integration of canonical equations of transverse
motion.
The symplectic property of integration method as well as the stability criteria, were
checked during the mapping by solving the linear system of 16 differential equations [16]

BAB ⋅=' ; (3.2.21)

where B  is 4×4 matrix and A is 4×4 Jacobian matrix, associated with the canonical
equations of motion.
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Fig. 3.2.21. Dynamic aperture reduction due to Wiggler operation.

Fig. 3.2.22 Dynamic aperture reduction due to Undulator I operation.

The results of phase space calculations are presented in Fig. 3.2.23-25. Tracking
simulations are carried out for the Gaussian bunch of 1001 particles with the initial
standard deviations: mmx 8.1=σ , mrad

x
8.0' =σ  and mmy 7.0=σ , mrad

y
4.0' =σ .

These values are taken more than twice as high as those for electron beam delivered from
booster. Tracking results show the negligible influence to the beam dynamic aperture by
the nonlinear field of storage ring main magnets. The dynamic amplitude reduction to
18mm in horizontal plane and 14.5mm in vertical plane are tolerable and still well outside
the physical aperture of IDs in the middle of the straight section
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Fig. 3.2.23 Beam cross section evolution after one revolution around the ring.

Fig 3.2.24 Horizontal phase space evolution after one revolution around the ring.

    Fig 3.2.25 Vertical phase space evolution after one revolution around the ring.
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The nonlinear chromaticity dependence of momentum spread is shown in Fig. 3.2.26. The
horizontal lines 91.180 −=xξ  and 87.140 −=yξ  indicate the values of natural linear

chromaticities in the horizontal and vertical planes respectively. The calculated values for
the absolute bunch lengthening and the nonlinear term of momentum compaction factor are

mms 00275.0=∆σ  and 5
1 1027.1 −⋅=α   respectively.

Fig 3.2.26 Nonlinear chromaticity vs momentum spread.

The more detailed study of nonlinear effects on the dynamic aperture reduction will be
done using computer code RACETRACK [17].
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