6.2 Control System

The following sections describe design considerations, architecture and fheneons of

the CANDLE Control System (CS). The main requirements are dajfgrateliability,
flexibility and to be open to evaluations and hardware modifications. The basic ideas are
the following: usage of de-facto standard poements, distributed control system, multi-
layered structure and modular hardware/software design. Software development is based
on object-oriented technology.

Consisting of three layers the architecture implements low-level device servers as
independent programs that coetelly control a number of devices gmavide the device

data to the netark and receive messages from the clients. The subsystems will be highly
automated by implementation of finite state machine servers in the middle layer, which
will have access to low-level device servers. The application programs in the third layer
will have access to the low-level device servers and the middlegeyersses.

6.2.1 Architecture

The CANDLE CS will follow the client-server configuration. The main challenge for the
design will be to create the softwaredualar with good intekfces to allow easy migrations

to new environments. Modular means that some sub modules must be changeable without
interference with other parts. It also means to design reusable objects. Basic element in a
control system is the communication interface. It defines the Application Program
Interface (API) for the data exchange between clients and sernemsuse of its iportant

role in a control system, the APl must be based on standard protocols. For the network
layer this is the TCP/IP Internet protocol. Higher level protocols are transported over the
basic TCP/IP services. All client and server programs conuatevia it.

Whenever possible standard industrial components should be used for front-end hardware
up to the display programs. And the software should be designed with the common tools
and programming languages. €t orientation leads to a clean fraroew and follows

the industrial paradigm. The artdature will consist of three layers of computers: a top
level with display or client programs, a middle layer to implemetd thases or sequencers
(central computers) and a front-end layer with device servers and 1/O (Fig.6.2.1). A CS
design goal is to implement a device server as an independent program thatelgmpl
controls a number of devices and provides the device data to the networ&caiveés
messages from the clients.

The upper layer is the intade to the operators. Thageper services should be available

to the consoles and on the central computers.

Front-end Hardware

The CS should be cost effective. We, tlfene, plan to use IBM-type PCs with operating
systems Linux and Windows. Most of the device input and output channels are connected
via VME modules or fieldbus ettronics to the device servers. The VME system is
designed as a reliable industria¢@kronic environment. Alimost any processor, analog or
digital input/output module and fieldbus int@ece are available in VME. All data
communications betwedront-end systems, central systems and consoles will be Ethernet
based.

224

Office Console Console
Display Display Display

Client layer

Network Switch

File and %
Database ;
Server E
> =

7

Device Device Device
Server Server Server -
AL
:
L
e 1/0 | o 10
iy
= Ficld Bus Local area network <> Hard disk

Fig. 6.2.1 The CANDLE Control System architecture.
Server
Sensors and actors (devices) of the acceleratorcameaxted to a serveprogram by a
variety of electronics. These programs provide all device services to the network. All
requests to a device have to pass to apm@t@prserveprogram. In general the server
resides in VME and communicates to the device by VMigute or via a fieldbus. Several
independent server processes provide support to various devices of the accelerator. The
services vary from simple reads of deviaaj automatic control of devidenctions and
error handling up to complex calculations aftalfrom several devices. Information from
these services will be available on the common Ethernet.

Client
A client is a program that uses services from the servers in the control system. The client
programs provide screen graphical iatgive display applications and screen drivers.
These programs run on the operator consoles and on the central computers. All these
programs should use the same commatinprotocol and the same library to talk to the
servers. This is important since it should be avoided to rewrite the same software for
different environments. Client software is a wide field and consists of some generic
programs (Fig. 6.2.2):

» Tools to display alarms and other device errors,

» Access all data in the system,

* Tools to display historical trends and other plots.

Generic programs will not be changed when the environment changes. Thepaliess

to all devices by standard methods. Other tools are standard programs that eslgown cr
of dedicated applicatiorfsr:

» generating and displaying synoptic repréagans of devices,
» storing and recalling machine paraters,

225

» accessing device datar data analysis frameavks like MATLAB or ROOT,
» interfacing machine simulation programs,
» defining automated sequencing of machine operations.

Display

Display
Functions
I

Davice Datal | NS
Interface Interface

Server Mames -
Database —E;:j

NS
DISplE}" ||nter‘la-ce Database of

Applications Device Data Transfar Server Names

RPC /

Communication

Logical Met

Server Names

Device Datal | NS
Interface Interface

1
Equipment
Functions —

Equipment Server

Device Datal | NS
Interface Interface

I
Equipment

Functions —E—:—B

Archiver and
- Configuration
Database

Devices] . Devices
Fig. 6.2.2. Qient-server model

6.2.2 Computer Communications

Networks between the consoles, central computers and front-end servers will be based on
standard local area network (LANgchnology. This is the 10/100Mbit Ethernet today.
Cheap interfaces for all computer types are available. At the front-end this is a fieldbus to
connect the locahput and output of the devices to the corresponding servers. Standard
LAN technology is also used in the links between the servers and all client processes. And
the whole network will be comtted to the BNDLE LAN.

Fieldbus

A fieldbus is a network that coeats sensors, actors or comphkeant-end input/output
devices to the local device servers. There is no single common standard fieldbus on the
horizon. On the other hand, control system has to focus on very few standards to reduce the
maintenance costs. Modern fielbuses like Profibus or CAN maielgtaur requirements

and are convenient to be used in CANDLE. The main merits of the mentioned buses are
the high reliability, high-speed deterministic control capabilities and cost effectivity. At
the same time these buses are widely used in industry and have various otbati@ppli

and therefore are supported by numerous leading metumérs. Some instruments are
equipped with the standard GPIB interfaces, which will be used to communicate between
the control system and devices such as Voltmeters, Digital Oscilloscopes and Spectrum
Analyzers. GBIB/Ethernet adapters will be used to communicate between GBIP devices
and ethernet fieldbuses.

226

6.2.3 Implementation

There are many implementations of control systems that have been developed at various
accelerator laoratories, which are too site-specific to be taken into consideration for
CANDLE. General control system architectures are of interest. Among those that deal with
the console and control layers and the communication between them are Distributed Object
Oriented Control System (DOOCS) [2] from DESY and Experimental Physics and
Industrial Control System (EPICS) [3] from LANL.

We will evaluate the péormance ofDOOCS, which has been alreagprted to the
hardware platform of our choice — IBM-PCs in Linux operating system. DD®CS

model is very close (almost the same) to the above description. DOOCS is a distributed
control system that was developed mainly for the control of TESLA Test Facility.

Server Process

' Network
Va — -u\"'\ﬁ" a device instance
Equipment Function I and all properties
(Dedines ome Devics Instanca) 4 ~ are named objects
- s || an the network
O Dste Funcion F'__"_..r B RPC |
= Float Data |y /}’;’:} -
- I 4 ‘:,g"/f o Archive
L] Ciata Functon A - 7 g Archive f"__:%
g History ha f) \‘“\""“- “}:____—_ -

k T~ . .
® Get o - I, / A| |5 config. - Configuration
® Set S Date Functon - \O Database
& Mameas H{] Control) o p .. \K —

L] 1 i o 1o
® Update - S | |
& Init. L] Dada Function il ._: VL
® % Hardw. Param, ' -
B | C) Hardware
. .A"'l/ -

A

It is an object-oriented system design from the device server level up to the operator
console. Class libraries were developed as building blocks for device servers,
communication objects and display qmmnents. The whole system is ti&n in C++
progamming language armdins mainly on Solaris, SunOS and Linux operating systems.
The communication is established by a standard set of dataldreba olgcts, which are
transferred by Remote Procedure Calls (RPC).

This multi-level system consists of both low-level components like device servers, and
high-level ones like DOOCS dda Display (DDD) with graphical edlif which was
developed to display and control the equipments. DDD allowation of corponent
libraries in a hierarchical way. The synoptic displays are aeichby the status of the
devices, sub-windows withethiled information or plots aractivated by a single mouse
click.

Device servers control different parts of hardware. Server processes are built from a
modular library of C++ classes (Fig. 6.2.3). &ctual server consists of several entries of a
device type at different locations in the system. It can also contain different device types.

Fig. 6.2.3 Equipment Server Process.

227

Every instance of a device defines a set of properties. These named properties are the
access points on the communication reeknand are implemented as dataeals.

The server library is a collection of various classeprtwide the network access and an
access to the hardware, such as VMifiBus, SEDAC and CAN. In addition, there are
classes to read/write the configuration file and to archive the data types on a hard disk.

The finite state machine concggi was introduced into thBOOCS, which resulted in
creation of a special class of servers, called FSM servers, to automate the subsystems and
to provide high-level control employing several DOOCS device servers.

DOOCS client API is able to handle different netk protocols in addition to the
DOOCS-RPQorotocol. So far, the EPICS Channealokss calls are supported as a second
protocol within the API.

Available client programs are DDD, LABVIEW, MATLAB, ROOT and separate tools,
which were designed for specific purposes (error-handling, save and restore,

External Programs: Utilities:)
DOOCS
Data Display MATLAB Error Handling
Utility to display animated LABVIEW Save & Restore
E}fnoptlcs fm-lrl.'\l device data RDOT TEES'[_ TDGI)
i i
Object Oriented Application Program Interface
RPC | Shared Memory | TINE | CA
! o 10
! i ¥
DOOCS Finite DevA-Pss! Name Service
Device Server J’.s/tate M_a chine EF‘H::S resolves server
4 ‘Pasd addresses provides
Object-orientad dasj - NAME QUETY Service
Ji;:;:z: o W rg.r&IEIh FEM it ormerte sl beayalants e TJ::l reliability I:F';-r
automated scripts to creats and acceleratar operation Fasd redundant servers
i i
HARDWARE

Fig. 6.2.4. Distributed object oriented control system.

Database

All the machine design information, hardware configuration and calibraéitay chachine

optics parameters will be stored in databaseerder to achieve a tier understanding of

the machine, it is desirable to have a more complete archive of the accelerator data. For
this purpose we will use an @lgjt oriented dta analysis system ROOT from CERN.

Concluding remarks

Looking through an existingccelerator control systems wisoose products that are able

to achieve maximal portability and longevity and which will remain alive even after a new
generation of PCs or a change of operating systems. Such an approach reduces cost and
also saves the development time.

The user-friendly configuration and reliability of DOOCS has been denatedtturing

several years of operation at TESLA Test Facility and the HERA vacuum system.

228

The object-oriented method is not just a good programmiagtipe but it also leads to
transparent system design in the whole field of control system, i.e. device hardware, device
servers, user interfaces gmegram libraries.

The great experience in operating an accelerator with object orientedbltagies at
DESY is a good basis for eation of reliable control systefor the CANDLE Light
Source.

References

1. V. M. Tsakanov, V. Avagyan, V. Ayvazyan, G. Amatuni, B. Grigoryan, M. Ivanyan, E.
Laziev, Y. Martirosyan, R. Mikaelyan, S. Tatikian and A. Vardanyan, ~Center for the
Advancement of Natural discoveries using Light Emission: A New prégec3 GeV
Intermediate Energy Lightasirce in the Republic of Armenia”, Review of Scientific
Instruments, V. 73, N3, 2002;

2. G. Grygiel, O. Hensler, K. Rehlich, "DOOCS: a Distributed Object OrieGtadrol
System on PC's and Wothsions", ICALEPCS97, Beijing, (1997); see also
http://tesla.desde/doocs/

3. L. R. Dalesio, M. R. Kraimer, A. J. Kozubal, "EPICS Architecture", ICALEPCS 91,
Tsukuba, Japan, 278-282 (1991).

4. V. Ayvazyan, K. Rehlich, S. N. Simrock, N. Sturm, "Finite State Machine
Implementation to Automate RF Operation at the TESLA Test Facility”, Proc.
PAC'2001, Chicago, 286-288 (2001)

5. V. Ayvazyan, K. Rehlich, S.N. Simrock, G. Amatuni, A. Yayloyan, “The Design of the
Control System”, Proc. of thé"®PAC, La Villete, France (to qmublished).

229

