1. Femtosecond Laser Microprocessing of Biomaterials

2. Nonlinear Optics of Nanoparticles and their Application in Biomedicine

Dr. Vladimir Hovhannisyan

Department of Physics, Taiwan National University, Taipei
Near infrared femtosecond (FS) lasers are promising tools for minimally invasive tissue surgery and scaffold fabrication for tissue engineering.

The performance of FS laser photomodification proved to be precise, repeatable and predictable.

In addition, FS lasers enable novel nonlinear optical imaging, like second harmonic generation (SHG) and two photon excited fluorescence (TPF) microscopy.
Tissue engineering is a new scientific field aimed to create living, functional tissues for replacing damaged tissue or organ.

Fabrication of 3D scaffolds with the desired microarchitecture from collagen or/and other natural materials is a challenge in tissue engineering and regenerative medicine.
Collagen

Col is the main protein of connective tissues and the most abundant protein in mammals (~25%). Col structural organization is responsible for biomechanical properties and specific functions of the connective tissues.

Col is composed of 3 alpha chains consisted of the regularly arranged amino acids, which are the basic units for collagen sub-units: Gly-X-Y. Gly stands for glycine, and X and Y represent any combination of other amino acid residues with 9% being proline and hydroxyproline. Derivatives of lysine and proline play important roles in the stabilization of globular structure and the shape of the fiber by forming covalent bonds.

Each chain contains precisely 1050 amino acids, and curls around with one another in a characteristic fashion of right-handed triple helix. Molecular weight-300000D
(a) Formation of tropocollagen

Procollagen

Procollagen peptidase

N-terminus end cleaved
Tropocollagen 3000Å

C-terminus end cleaved

(b) Association of tropocollagen into collagen fiber

Formation of cross-links

400Å

C-terminus

N-terminus

Glycine Residues (∙)

15Å

(Klug & Cummings 1997)
Non-linear Optics and Multiphoton Microscopy

- Minimally invasive
- Deeper penetration
- Reduced photon damage

<table>
<thead>
<tr>
<th>One-photon excitation</th>
<th>Two-photon excitation</th>
</tr>
</thead>
</table>

One photon

Two - photon

SHG
Fig. 4 SHG imaging of two cavitation bubbles each induced by a single-pulse intrastromal fs laser ablation. Bar= 50 μm.

Low-density Plasma effects and breakdown phenomena induced by FS laser pulses. The irradiance values also are normalized to the optical breakdown. Critical electron density of $\rho_{cr} = 10^{21}$ cm$^{-3}$
Multiphoton Imaging (MPI) of single rat tale tendon FS laser modification

Real time multiphoton imaging (MPI) of FS laser photomodification and destruction of single rat tale tendon. **Green pseudo-color-TPF** (435-700 nm) and **red pseudo-color-SHG** (390 nm). Laser power- P=6 mW.

Frame size 6x6mm².

“**Dynamics of femtosecond laser photomodification of collagen fibers**,”

FS laser photodestruction of collagen network from bovine Achilles tendon

20 µm
FS laser destruction and real time MPI of chicken leg tendon at different laser powers

B- P=28 mW A- P=34 mW

Frame size -12 \(\mu \text{m}^2 \), pixel resident time- 3.2 \(\mu \text{s} \), imaging frequency -2 Hz. Objective- Plan-Neofluar 20x/0.5 NA.
Time-lapsed MPI of dried bovine leg tendon photomodification at the laser power $P=30$ mW. Red: SHG. Green: TPF. 20x/NA 0.5 objective was used.

B. Kinetics of SHG (1-3) and TPF (1’-3’) signals from FS laser illumination at $P=34.5$ mW (1, 1’), 28 mW (2, 2’) and 24 mW (3, 3’). 1”-3” are derivative curves of 1-3 series.
Kinetic analysis of the CFP process in bovine leg tendon

A. Plots of SHG intensity $I_{SHG}(t)$ (1), TPA intensity $I_{TPA}(t)$ (2), and exponential fit of $I_{TPA}(t)$ (3) as a function of time. B. Plot of $\Delta I_{SHG}(t) = I_{SHG}(\text{max}) - I_{SHG}(t)$ vs. $\Delta I_{TPF}(t) = I_{TPF}(t) - I_{TPF}(\text{min})$ for 0-2.5 min period. Objective: 20x/NA 0.5 objective, $P=30$ mW.

$A(t) = \alpha \Delta I_{TPA}(t) = A_0 \exp(Kt)$ and A_0 is the proportionality factor.

$\frac{dA}{dt} = -\frac{dC}{dt} = KA_0 \exp(Kt) = KA(t)$
\[
\frac{dC(t)}{dt} = -kC(t)A(t) \quad A(t) = N - C(t)
\]

\[C(t) = \frac{N}{1 + \exp(Nkt + \ln(A_0(N - A_0)))}\]

N- initial concentration of native collagen,

\[C(t) \sim I_{\text{SHG}}(t)\] – current concentration of native collagen;

\[A(t) \sim I_{\text{TPF}}(t)\] - concentration of collagen photoproduct;

\[k\] - photomodification rate, which strongly depends on irradiation laser intensity;

\[A_0\] is initial small concentration of photoproducts at \(t=0\),
Dependences of $ln(k)$ and $ln(k/D)$ on lnP for bovine leg dry tendon.

Here we set N as 1 and $ln(A_0/(N-A_0))$ as D.

The slopes for $ln(k)$ is 5.9 ± 0.3 and for $ln(k/D)$ 5.7 ± 0.3
Collagen fiber destruction in bovine cornea

P=21mW, frame size 11.5 µm
FS laser lithography in bovine corneal stroma. The letters “V” ((A) and (C)) and “I” (B) were sculptured with 20 mW of FS laser. Image (A) was acquired using FS laser with power of 5 mW (red: SHG; green: TPAF). (B) and (C) are confocal images (blue: reflected confocal signal at 458 nm; green: autofluorescence between 505-550 nm; red: autofluorescence between 550-670 nm). (Frame height: 17 μm).
Collagen fiber destruction and FS laser manipulation in bovine cornea
A crossed pattern was engraved at the depth of 160 μm in chicken leg bone cartilage tissue by the scanning of two perpendicular rectangles 1×23 μm² in size using 40 sec of focused illumination at \(P=30 \) mW. The objective: Fluar 40x/NA 1.3_oil.

a. Combined SHG (red) and TPA) (green) image.

b. SHG image illustrates photomodification of collagen fibers inside the illuminated area.

c. TPA image illustrates the formation of photoproducts.
3D engraving of cross patterns in chicken leg bone cartilage matrix by FS laser using the Fluar 40x/NA 1.3 oil objective. Two cross patterns were engraved at the depths of 7.8 µm (P=20 mW) and 20 µm (P=60 mW), and the third cross pattern oriented at 45° relative to the first 2 patterns, was engraved at the depth of 15 µm (P=40 mW). Axial profiles of SHG intensity in two regions are shown. Profile 1 passed through the two engraved patterns “+” and the profile 2 passed through the engraved sign “×”.
3D SHG image of the photomodified chicken leg bone cartilage

3D MPI of the photomodified tissue. Scan volume $26 \times 26 \times 27 \text{ mm}^3$, and optical sections were acquired at the intervals of 0.3 µm. B. White color indicates the photomodified sites.
A. MPI of cartilage tissue dipped in rhodamine B (RB) solution after \(P = 30 \text{ mW} \) of \(1 \text{ min} \) illumination in creating a rectangular \((1 \times 40 \text{ } \mu \text{m}^2) \) pattern. RB solution flowed into the cavity engraved by fs laser at the depth of 3 mm. Green is TPF of RB and red is collagen SHG signals.

B. Intensity profiles of TPF (1) and SHG (2) along the 1-1’, and TPF (3) along the 2- 2’ bars.
FS-laser cutting of single collagen fibers deep in chicken skin

MPI of two sites in wet chicken skin dermis before (A, B) and after (A’, B’) 50 mW FS laser illumination of the selected regions of interest. A’ is an image of the blue squared region marked in A after 20 sec of fs laser illumination. B’ is the image of B after 30 sec illumination. TPF of the generated photoproduc that was seen after the short time illumination (A’), vanished after longer fs laser illumination (B’).
Collagen FS laser cutting (A) and welding (B)
Collagen fiber FS laser bending
Bending of collagen fibers from FS laser illumination of dry RTT (A, A'), BAT (B, B'), and chicken leg tendon (C, C'). A, B, and C - collagen fibers before photomodification and A', B' and C' are the images after FS modification. Laser powers were 20 (A and B) and 40 mW (C). The photomodification regions (one site in A and two sites in B and C) are indicated by arrows.
FS laser cutting of silk (A,B) and polymer (C) fibers
Time dependence of TPF(green) and SHG(red) intensities during the FS laser scan within a collagen fiber network from bovine Achilles’ tendon. The laser power was 29 mW. Frame size 46x46 μm².

Novel non-invasive technologies for laser modification of ocular optic refractive structures

I. M. Kornilovskiy,
National Medical Surgical Center, Moscow, Russia

Refractive surgery and ophthalmology

1st option - the use of high power laser formation of micron-sized gas bubbles in the corneal stroma.

2nd option - the use of low radiation sufficient to effect photochemical interaction, but below the threshold of plasma bubble formation.

3rd option - combination of the micro-ablation and photochemical modification.
Drosophila melanogaster (DM) model for MPI

Drosophila melanogaster: 75% of human disease-causing genes have a functional homolog in DM. DM in biomedical research:
• Central nervous system disease,
• Cardiovascular disease, Cancer,
• Diabetes,
• Drug development/screening and target discovery.

Side views (A and B) and top view (C) of the second stage DM larva. Whole-body, depth-resolved TPF (green) and SHG (red) images of DM were acquired in vivo using multiphoton microscope based LSM510 system and ti:sa femtosecond laser, $\lambda_{\text{exc}} = 780$ nm. Objective-40×/NA 1.2.

Confocal microscopy of brain of GFP transfected DM.

$\lambda_{\text{exc}} = 458 \text{ nm}$. C-Apochromat 40x/1.2W

Projection of 3D TPF image of vascular system providing circulation of hemolymph in DM brain.

SHG image of DM brain vessel.
FS laser micro-surgery of Drosophila melanogaster (DM) organs

Laser ablation of DM nerve-muscle junction

Laser ablation of anterior spiracles

Laser ablation of eye fiber

Frame size 40x40 μm², λ_{exc}=780 nm. Objective-40×/NA 1.2
Summary

Non-ablative, mini-invasive, high-resolution laser controlled modification of biotissue and imaging by FS laser were demonstrated. The micro-modification mediates by free-electron-induced chemical bond breaking and low-density plasma formation followed by chemical effects, and not relates to heating or thermoelastic stresses. Using SHG and TPF microscopy it was shown that efficiency of the process depended on the ~ 6 power of the laser intensity. Furthermore, it was demonstrated that the method can be used for bending and cutting of collagen, elastine and myosin fibers and creating 3D patterns within biological tissue with high precision ($\sim 2 \, \mu m$).
1. **Tissue engineering and regenerative medicine**: laser microprocessing, cutting, welding and form construction.

2. **Cosmetics**: skin resurfacing, burn- and freeze-produced wounds healing.

4. **Oncology**: Laser surgery and coagulation, TPF monitoring of delivery and accumulation of photosensitizer, fluorescence diagnosis and photodynamic therapy of cancer;

5. **Biomedical Instrumentation**: diagnostics and measuring systems based on nonlinear optics.
2. Nonlinear Optics of Nanoparticles, and their Application in Biomedicine
Introduction

• Nanoparticles (NPs) have been introduced in biomedicine as effective agents for cancer-targeted drug delivery and thermotherapy.

• Gold (Au) and silver (Ag) based NPs have additional advantages because of Surface Plasmon Resonance Enhancement, which can intensify electrical, optical, thermal, and chemical processes in local area around NPs. The enhancement of the optical response is especially large in case of multi-photon induced processes, including second SHG and TPF.

• We study nonlinear optical properties of Au, and Ag NPs, and apply these materials in multiphoton imaging (MPI) and laser phototreatment of biological systems.

• Using MPI and nonlinear spectroscopies, the biodistribution, pharmacokinetics, surface-enhanced phototoxicity and laser induced thermal effect of NPs in cells and Drosophila melanogaster (DM) model will be investigated.

• The research may help to introduce these NPs and nonlinear optical approaches into biomedicine and clinical environment.
Multiphoton imaging of GNP s in water with 5 mW (A) and 10 mW (B) 780 nm ti:sa laser irradiation. Red is SHG (registration range -380-400 nm) and green is TPF (430-650 nm). Frame size 50 µm. Objective- 20×/NA 0.5.
MPI of Au nanorods in biotissues

MPI of GNPs inside of a chicken skin. Irradiation intensity 8 mW (A) and 20 mW (B). SHG from collagen fibers also are seen as a red pseudocolor. Objective- 20×/NA 0.5.
MPI of Ag nanoparticles in water and biotissues

MPI of Ag nanoparticles near the edge of the water drop. Frame size: 30x30x10 µm³

MPI of DNA fascicles in water+Ag NPs solution. Green (TPF), red (SHG) and yellow (TPF+SHG) spots in (B) indicate Ag nanoparticles or their aggregates.

Frame size 50x0 µm², λ_{exc}=760 nm. Objective-40×/NA 1.2
Linear and nonlinear properties of gold nanorods (GNRs)

Polarization studies demonstrate resonance enhancement of the SHG intensity from GNRs. The maximal SHG signal is obtained when the incident light polarization direction is parallel to the nanorod long axis.

TEM images of GNR used in the research

Absorption spectra of GNR before and after irradiation with NIR FS laser for 10 min and GNRs/FITC@PAA conjugates.

Experimental procedures to measure the cell viability of MCF-7 cells with GNR conjugates inside after laser irradiation.

Confocal microscopic image of MCF-7 cells incubated with GNRs@FITC/PAA conjugates (green color). The cross section image confirms that the conjugates are located inside the cells. Image size is 200x140 μm².

Thanks for Your Attention!