ДИССЕРТАЦИЯ

На соискание ученой степени кандидата технических наук А04,16

УСКОРИТЕЛЬНЫЕ МЕТОДЫ ПОЛУЧЕНИЯ ТЕХНЕЦИЯ 99М - ТЕХНОЛОГИИ ПОДГОТОВКИ И ОБРАБОТКИ МИШЕНИ И КОНТРОЛЯ ПУЧКА

Соискатель: Геворг Суренович Арутюнян

Научный руководитель: Альберт Эдуардович Аветисян

Актуальность проблемы

- 40-45 млн. процедур диагностики в год с использованием ^{99m}Tc во всем мире
- Основной метод получения реакторный, имеет следующие недостатки
 - Длительные или аварийные отключения реакторов
 - Большое количество неиспользуемых радиоактивных отходов
 - NRU реактор в Chalk River (Canada), производящий 40 % мирового производства ⁹⁹Мо будет закрыт в 2016 г.
- Проблемы транспортировки из-за короткого время полураспада генератора и изотопа ⁹⁹Мо Т_{1/2} = 2.75 дней, ^{99m}Тс Т_{1/2} = 6ч
- Изотоп ^{99m}Тс также может быть непосредственно произведен на циклотроне

Цели данной работы

- разработка и внедрение технологии изготовления мишеней,
- решение вопросов обеспечения механической прочности порошковых мишеней
- расчет и моделирование процессов выделения тепла в мишени при различных режимах облучения и профилях пучка
- создание системы прецизионного измерения поперечного профиля пучка
- разработка и создание системы восстановления дорогостоящего обогащенного ¹⁰⁰Мо
- разработка и создание системы контроля радиохимической чистоты

ГЛАВА 1. МЕТОДЫ ПОЛУЧЕНИЯ МЕДИЦИНСКИХ ИЗОТОПОВ

- §1. Медицинские изотопы и их применения.
- §2. Реакторный метод получения медицинских изотопов
- §3. Ускорительный метод получения медицинских изотопов: электроны
- §4. Ускорительный метод получения медицинских изотопов: протоны
- §5. Ускорительные методы получения изотопа ^{99m}Tc

§1. Медицинские изотопы и их применения

§2. Реакторный метод получения медицинских изотопов

Используются тепловые и быстрые нейтроны с интенсивностями от 10¹² до 2*10¹⁵ нейтр./(см² · с)

- (n, γ) для получения ²⁴Na, ³²P, ⁶⁴Cu, ⁸²Br, ⁸⁶Rb, ⁹⁰Y, ⁹⁹Mo/^{99m}Tc, ¹⁹⁸Au из природного сырья; ⁴²K, ⁵¹Cr, ⁵⁹Fe, ⁹⁹Mo/^{99m}Tc, ¹¹³Sn/^{113m}In, ¹⁶⁹Yb, ¹⁹¹Os/^{191m}Ir, ¹⁹⁷Hg из изотопо-обогащенных мишеней;
- (n, γ) с последующим бета-распадом промежуточного нуклида для получения ¹²⁵I,
 ¹³¹I, ¹³¹Cs, ¹⁹⁹Au
- реакции двойного захвата нейтронов (n, γ), (n, γ) для получения ⁶⁶Ni/⁶⁶Cu,
 ¹⁰⁹Cd/^{109m}Ag;
- реакции деления урана для получения ⁹⁰St/⁹⁰Y, ⁹⁹Mo/^{99m}Tc, ¹³¹I, ¹³²Te/¹³²I, ¹³³Xe

§3. Ускорительный метод получения медицинских изотопов: электроны

Используется тормозное излучения электронов (Еү>8 МэВ) достаточно интенсивности (>10³ Вт/см²)

Типичные получаемые радиоизотопы; ⁴⁷Sc (⁴⁸Ti(γ,p)⁴⁷Sc, 3.35 дней), ⁶⁷Cu(⁶⁸Zn(γ,p)⁶⁷Cu, 61.8 часов), ⁵⁷Co(⁵⁸Ni(γ,n)⁵⁷Ni, ⁵⁸Ni(γ,p)⁵⁷Co, 270 дней), ¹¹¹In(¹¹²Sn(γ,p)¹¹¹Sn→ ¹¹¹In, 2.83 дней)

Схема получения изотопа ⁹⁹Мо на линейном ускорителе электронов.

§4. Ускорительный метод получения медицинских изотопов: протоны

Циклотрон	Энергия протонов, МэВ	Ядерные реакции	Основные производимые радионуклиды
Уровень I	≤ 10	(<u>p,n</u>), (p,α)	¹¹ C, ¹³ N, ¹⁵ O, ¹⁸ F
Уровень II	≤ 20	(<u>p,n</u>), (p,α)	¹¹ C, ¹³ N, ¹⁵ O, ¹⁸ F, ⁶⁷ Ga, ¹⁰³ Pd, ¹⁰⁹ Cd, ¹¹¹ In, ¹²³ I, ¹²⁴ I, ¹⁸⁶ Re
Уровень III	≤ 45	(<u>p,pn),</u> (p,2n), (p,3n) и др.	²² Na, ³⁸ K, ⁵⁷ Co, ⁶⁷ Ga, ⁶⁸ Ge, ⁷³ Se, ⁷⁵⁻⁷⁷ Br, ⁸¹ Rb (⁸¹ Kr), ¹¹¹ In, ¹²³ I, ²⁰¹ TI, ²²⁵ Ac
Уровень IV	≤ 200	(<u>р</u> ,4n), (р,5n) и др.	 ²²Na, ²⁸Mg, ⁵²Fe, ⁶⁷Cu, ⁷²Se (⁷²As), ⁸¹Rb (⁸¹Kr), ⁸²Sr (⁸²Rb), ¹⁰³Pd, ¹⁰⁹Cd, ^{117m}Sn, ¹²³I, ¹⁴⁹Tb, ²⁰¹TI

В последнее время преимущество в производстве изотопов отдается специализированным медицинским сильноточным циклотронам

Используются протоны, дейтроны энергии 10-50 МэВ

Основные изотопы производимые на на протонных циклотронах

§5. Ускорительные методы получения изотопа ^{99m}Tc

Получение на электронных ускорителях

0.921 β- 1.214 MeV y 740 keV 82.2% 12.3% y 778 keV γ + ¹⁰⁰Mo \rightarrow ⁹⁹Mo+ n Порог = 9.1 MeV 4.30% 0.181 43 Tc 99m (6.007 h) 0.143 \checkmark a_τ 1.37·10 0.141-0.141 y 181 keV ly 141 keV 6.14% 89% $T1/2 \sim 67$ часов \rightarrow^{99m} Тс ($T1/2 \sim 6$ часов) 0.0 0.0 43 Tc 99 (2.1.105 a)

42 Mo 99 (65.976 h)

1.357

§5. Ускорительные методы получения изотопа ^{99m}Tc В 2012 году в ННПА были проведены эксперименталь

Экспериментальная установка для получения 99Мо на линейном инжекторе LUE50 ускорителья АРУС В 2012 году в ННЛА были проведены экспериментальные работы для изучения возможности производства изотопа ^{99m}Tc методом облучения ¹⁰⁰Мо на линейном инжекторе LUE50 ускорителя АРУС в Ереване

Масса облучаемой мишени составляла 20 грамм, материал – триоксид молибдена МоО₃, интенсивность электронного пучка 10 мкА, длительность облучения 100 часов

В данном эксперименте получен результат 3000 Бк/мг[.]мкА[.]час

Приведенные результаты показывают возможность получения промышленных количеств изотопа ^{99m}Tc на электронных ускорителях при достаточно высоких интенсивностях пучка – более 50 мкА

§5. Ускорительные методы получения изотопа ^{99m}Tc

Получение на протонных ускорителях

Сечение реакции ¹⁰⁰Мо(p,2n)^{99m}Tc.

Изотоп ^{99m}Тс также может быть непосредственно произведен на циклотроне методом бомбардировки ¹⁰⁰Мо протонным пучком в реакции ¹⁰⁰Мо(p,2n)^{99m}Тс

Из-за сравнительно небольшого периода полураспада - 6.02 часа - прямое производство может быть использовано только для местного применения

Глава 2. Технология изготовления и облучения мишеней для получения ^{99m}Tc на циклотроне C18

- §2. Теплофизический расчет облучения мишени
- §3. Криогенное охлаждение мишенного модуля

Глава 2: Введение

- Циклотрон С18, установленный в Центре Производства Изотопов, в Армении, предназначен в основном для получения ПЭТ изотопа ¹⁸F.
- Если как мишень использовать ¹⁰⁰Мо, можно получить ^{99m}Tc без промежуточного изотопа ⁹⁹Mo.

Возникающие задачи

- Разработка технологии изготовления твердотельной мишени из порошка молибдена
- Разработка технологии охлаждения мишени
- Предварительный расчет тепловой нагрузки на мишени в зависимости от параметров охлаждения, материалов мишенного контейнера и режима облучения

Глава 2: Введение

Общий вид циклотрона С18 с выведенным почкопроводом

Мишенный модуль Nirta Solid Compact TS06

Мишенный диск

- Для получения ^{99m}Тс в качестве мишенного материала используется молибден.
- Вследствие очень высокой температуры плавления (Т_{пл} = 2890 °К) изготавливать из него заготовки для мишеней достаточно трудно.
- В основном мишень делают из пороша молибдена
- Порошок очередь обладает очень низкой теплопроводностью и механической прочностью

- Был применен стандартный метод прессовки натурального молибденового порошка прессом с силой ~40000 N,
- Без дополнительной обработки такая таблетка не обладает достаточной прочностью и может разрушиться во время установки в мишенную зону или при извлечения после облучения
- Для увеличения механической прочности был разработан метод лазерной обработки поверхности таблетки.

- Был использован лазер со следующими параметрами: длина волны- 1.6 мкм, энергия импульса - 250 мДж, частота повторения импульсов- 40 Гц, длительность импульса - 200 мксек
- Было изготовлено специальное устройство для поверхностной обработки таблеток
- Лазерный луч проходил через пучковый расширитель и далее фокусировался линзой с фокусным расстоянием F = 150 мм. Диаметр светового пятна варьировался в диапазоне 150-300 мкм
- При данном методе обработки молибденовый порошок плавится в следе лазера, создавая полосу твердого молибдена шириной нескольких сотен микрометров

Молибденовая таблетка, обработанная лазерным пучком при разных увеличениях: (а) общий вид, (b) увеличение в 20 раз, (c) увеличение в 42 раза

было создано устройство для измерения относительной прочности таблеток с лазерной обработкой и без лазерной обработки

как видно из приведенных таблиц – механическая прочность после лазерной обработки выросла более чем в 1.5 раз

N⁰	Диаметр (мм)	Толщ ина (мм)	Вес (мг)	Механическа я прочность (o.e.)	Nº	Диаметр (мм)	Толщи на (мм)	Вес (мг)	Механическая прочность (о. е.)
1	9	0.8	580	445	1	9	0.75	560	884
2	9	0.76	560	476	2	9	0.78	570	844
3	9	0.7	570	560	3	9	0.79	570	724
4	9	0.72	540	426	4	9	0.80	580	604
5	9	0.74	535	436	5	9	0.76	535	⁶⁴⁴ 19

Спектральный рентгеновский фазовый анализ: (а) порошка MoO₃, (b) таблетки прессованного металлического Mo без обработки, (c) таблетки прессованного Mo обработанного лазером в воздухе, (d) таблетки прессованного Mo обработанного лазером в неоновой атмосфере

- Мо окисляется в воздухе при температурах T>600°C
- Во время лазерной обработки температура поверхности места плавления доходит выше 2700°С
- Есть опасение, что часть металлического молибдена может трансформироваться в МоО₃ во время обработки
- Лазерная обработка была проведена в специальной герметичной установке, наполненной инертным газом
- были изготовлены три идентичные таблетки из молибдена, и обработаны в разных режимах
- Результаты обработки были сравнены спектральным рентгеновским фазовым анализом
- Показано, что в процессе лазерной обработки не происходит преобразования Мо в МоО₃

Мишенный диск с запрессованным молибденом после лазерной обработки (слева), с 40-кратным увеличением (справа).

- Во время облучения мишень охлаждается с фронтальной и тыловой сторон.
- С фронтальной стороны мишень охлаждается потоком газообразного гелия.
- Тыловое охлаждение мишени по заводской технологии осуществляется потоком воды под давлением 8 бар.
- Этот метод позволяет утилизировать W = 500 Вт тепловой мощности.
- При энергии протонов Е_р=18 МэВ эта мощность соответствует току пучка I_р ≈ 27 мкА, тогда как циклотрон С18 может обеспечить ток до 100 мкА.
- Увеличение интенсивности процесса охлаждения мишени позволяет значительно увеличить ток пучка при облучении и повысить эффективность получения изотопа.
- Предлагается производить охлаждение с тыльной стороны мишени жидким азотом.
- Для выбора подходящего материала мишенного диска и метода охлаждения нужно произвести предварительный теплофизический расчет осесимметричной мишени.

Сетка конечных элементов модели мишенного диска

- Расчет теплофизических процессов проведен методом конечных элементов с помощью программы ANSYS
- Расчет произведен для разных величин среднеквадратического отклонения гауссовского распределения пучка циклотрона, материала мишенного диска и режима охлаждения мишени
- Для каждого случая найден ток пучка, при котором максимальная температура мишени не превышает 600°С

Примеры решения распределения температур в мишенном диске из титана в

случае тылового охлаждения жидким азотом:

a) при σ – 3 мм и токе пучка – 16.4 µА,

b) при σ – 4 мм и токе пучка – 25.2 µА

с) при σ – 5 мм и токе пучка – 36.2 µА

Входные	параметры		Полученные параметры		
Коэфф. распред . пучка σ, mm	Материал миш. диска	Метод охлажд.	Макс. ток пучка, µА	Эффектив ность пучка, %	Эффективны й ток, µА
3	Ti	Вода	11.6	90.5	10.5
4	Ti	Вода	18	73.8	13.3
5	Ti	Вода	26	59.5	15.5
3	Ni	Вода	27	90.5	24.4
4	Ni	Вода	44.1	73.8	32.5
5	Ni	Вода	66	59.5	39.3
3	Ti	Азот	16.4	90.5	14.8
4	Ti	Азот	25.2	73.8	18.6
5	Ti	Азот	36.2	59.5	21.5
3	Ni	Азот	32.8	90.5	29.7
4	Ni	Азот	53.3	73.8	39.3
5	Ni	Азот	79.1	59.5	47.1

Результаты расчетов в зависимости от распределения пучка, материала мишенного диска и метода охлаждения

Основываясь на данных расчетах можно сделать следующие выводы:

- Материал мишенного диска существенно влияет на теплоотвод во время облучения протонным пучком.
- Если вместо стандартного охлаждения водой с тыловой части производить охлаждение жидким азотом, возможно существенно повысить интенсивность облучения и таким образом увеличить выход полученного изотопа.
- Важным параметром при облучении мишени является распределение профиля пучка частиц. Согласование этого профиля с параметрами мишени имеет существенное значение при определении максимального допустимого тока пучка и эффективности процесса.

§3. Криогенное охлаждение мишенного модуля

- Была разработана и изготовлена соответствующая экспериментальная установка
- В качестве имитатора нагрева от пучка служил твердотельный лазер с длиной волны 1.06 микрон и максимальной мощностью пучка 50 Вт
- Температура поверхности мишени измерялась дистанционным инфракрасным термометром – пирометром
- Без подачи жидкого азота при воздействии лазерного луча на мишень температура поверхности нарастала со временем и достигла равновесного значения 500 °C.
- При подаче жидкого азота в охладитель при той же интенсивности лазерного воздействия температура нарастала со временем и достигла равновесного значения в 320 °С
- На лицевую часть мишени никакого охлаждающего воздействия не осуществлялось

§3. Криогенное охлаждение мишенного модуля

- Проведенный качественный эксперимент показал принципиальную возможность криогенного охлаждения мишени при облучении пучком протонов от циклотрона С18.
- Эффективное криогенное охлаждение снизило температуру лицевой поверхности мишени на 180 °C (с 500 °C до 320 °C то есть примерно в 1.5 раза)
- Предварительные оценки показывают, что расход жидкого азота составит 5-7 литров в час
- Эти исследования целесообразно продолжить под пучком CO₂ лазера с максимальной мощностью лазерного пучка 500 Вт

Глава 3. Измерение профиля пучка – неразрушающий метод сканирования электронных, протонных и нейтронных пучков

- §1. Струнный сканер вибрирующей струны: основные типы и параметры
- §2. Влияние внешней среды на параметры струнных сканеров
- §3. Модификации датчика вибрирующей струны
- §4. Измерение нейтронных пучков с помощью струны с гадолиниевым покрытием

§1. Струнный сканер вибрирующей струны: основные типы и параметры

- Было показано, что согласование параметров пучка с параметрами мишени существенно влияет на эффективность процесса получения изотопа
- Данное согласование актуально не только для прямого получения ^{99m}Tc на протонном пучке, но и в методах получения ^{99m}Tc с помощью нейтронных или электронных пучков
- Для измерения поперечных профилей пучков широко используются струнные датчики
- В ННЛА были разработаны датчики вибрирующей струны, обладающие беспрецедентной точностью и большим динамическим диапазоном

§1. Струнный сканер вибрирующей струны: основные типы и параметры

- Принцип действия данных датчиков заключается в использовании, при сканировании пучка, вибрирующей струны, частота колебаний которой определяется интенсивностью пучка падающего на струну
- Изменение частоты обуславливается изменением температуры струны и соответствующим изменением натяжения струны
- Разные модификации данного датчика позволяют проводить измерения на электронном, протонном или нейтронном пучках

§1. Струнный сканер вибрирующей струны: основные типы и параметры

Общий вид датчика вибрирующей струны.

Электронная плата датчика, которая обеспечивает генерацию колебаний и измерение частоты

§2. Влияние внешней среды на параметры струнных сканеров

- На частоту колебаний струны влияют изменение температуры струны, а также состав атмосферы и внешней температуры
- Показано, что влияние температуры внешней среды может быть учтено в процессе измерений, поскольку имеет существенно большую инерционность
- Влияние атмосферы существенно влияет на чувствительность и характерное время датчика
- Учтен также эффект взаимного теплового влияния струн друг на друга для многострунных датчиков

§3. Модификации датчика вибрирующей струны

Первая модификация датчика на базе вибрирующей струны с раздельными струнами

 а) основные части датчика: 1 - вибрирующая струна, 2 - мишенная струна, 3 - магниты,
 обеспечивающие генерацию колебаний струны;
 b) датчик в сборе

§3. Модификации датчика вибрирующей струны

- Для ускорения процесса сканирования
 была разработана модификация датчика
 вибрирующей струны резонансного типа
- В данной системе измерения осуществляются в двух крайних положениях вибрирующей струны и вычитаются
- Это позволяет убрать фоновую компоненту и получить сведения только о рассеяных на струне частицах
- Характерные скорости сканирования могут достигать несколько десятков см/с, а время сканирования - десятки мс.

§4. Измерение нейтронных пучков с помощью струны с гадолиниевым покрытием

- Синтез изотопов может осуществляться также путём облучения мишени потоком нейтронов
- На ускорителе GRAND использовался поток нейтронов с энергией 14 МэВ для получения ⁹⁹Мо в реакции ¹⁰⁰Мо(n, 2n)⁹⁹Мо
- У нейтронов есть интересные применения в медицине, как в лечении рака, так и в разработке ультра-чувствительных исследований внутренней и внешней химической среды человека
- Измерение пространственного распределения нейтронных пучков также представляет собой актуальную и интересную задачу
- Для измерения профилей потока нейтронов предложен новый тип датчика на базе вибрирующей струны

Глава 4. Восстановление мишени после облучения

- §1. Химическое восстановление облученной мишени до MoS₃
- §2. Восстановление MoS₃ до MoO₃
- §3. Восстановление МоО₃ до Мо
- §4. Контроль радиохимической чистоты с помощью гамма-сканера

§1. Химическое восстановление облученной мишени из щелочного раствора до MoS₃

- В циклотроне облучается металлический молибден
- Облученный молибден окисляется до триоксидамолибдена МоО₃.
 (Окисление возможно произвести перекисью водорода H₂O₂)
- МоО₃ растворяется в щелочном растворе КОН+К2СО₃ образуя К₂МоО₄ и смешивается с метил-этил-кетоном (МЭК), который соединяется с имеющимся в растворе ^{99m}Tc
- Растворы разделяются в экстракторе, центробежным методом извлекается ^{99m}Tc
- После экстракции ^{99m}Тс необходимо восстановить Мо из щелочного раствора, в котором молибден в присутствует в виде К₂MoO₄

§1. Химическое восстановление облученной мишени из щелочного раствора до MoS3

Вытяжной шкаф, в котором производилась подача сероводорода

Склянка с соляной кислотой, которая подавалась в колбу с сульфидом железа.

§1. Химическое восстановление облученной мишени из щелочного раствора до MoS₃

Блок управления для автоматической подачи соляной кислоты в колбу с FeS и терморегулирования водяной бани.

§1. Химическое восстановление облученной мишени из щелочного раствора до MoS3

После прохождения сероводорода через барботер с щелочным раствором происходила следующая реакция

$$K_2MoO_4 + 4H_2S => MoS_3 + K_2S + 4H_2O_2 => MoS_3 + K_2S = K_2MoS_4$$

После прекращения процесса сульфидирования щелочной раствор нейтрализовался соляной кислотой для выпадения осадка MoS₃

$$K_2MoS_4 + 2HCI = MoS_3 \downarrow + 2KCI + H_2S$$

$$K_2CO_3 + 2HCI = 2KCI + H_2O + CO_2$$

Барботер с щелочным раствором, изменившим цвет после прохождения сероводорода через него. **40**

§1. Химическое восстановление облученной мишени из щелочного раствора до MoS3

Результат нейтрализации щелочного раствора

Процесс промывки осадка сульфида молибдена дистиллированной водой

§2. Восстановление MoS_3 до MoO_3

Во втором этапе промытый осадок прокаливался в печи с подачей воздуха при двух режимах:

 $MoS_3 = MoS_2 + S$

$$2MoS_2 + 7O_2 = 2MoO_3 + 4SO_2$$

при t = 250-300°C

при t = 500-600°C

Параллельно проходят реакции:

 $MoS_{2} + 6MoO_{3} = 7MoO_{2} + 2SO_{2}$

 $2MoO_2 + O_2 = 2MoO_3$

§2. Восстановление MoS_3 до MoO_3

Параметры печи

- максимальная температура 1200 °C,
- мощность 1.5 кВт,
- вид теплоизоляции волокно из оксида алюминия,
- размеры рабочего пространства; длина – 400 мм, диаметер – 20 мм,
- вид термопары хромельалюмель (К-Туре).

Печь была оснащена температурным контроллером

a)

b)

- а) Высокотемпературная лабораторная печь для восстановления Мо
 - b) блок управления печи.

§2. Восстановление MoS₃ до MoO₃

Экспериментальная установка для восстановления MoS₃ до MoO₃ и MoO₃ до Mo

§2. Восстановление MoS3 до MoO3

Результат восстановления сульфида молибдена **MoS**₃ до оксида молибдена **MoO**₃.

$\S3.$ Восстановление МоО₃ до Мо

- Порошок МоО₃ прокаливался в печи при подачи потока водорода.
- Эффективное восстановление до Мо происходит при температурах выше 800 °C.
- Так как температура плавления триоксида молибдена–795 °С, восстановление ножно производить происходит в двух последующих режимах:

MoO₃ + H₂ = MoO₂ + H₂O, при t < 600°C MoO₂ + 2H₂ = Mo + 2H₂O, при t > 600°C

$\S3$. Восстановление MoO₃ до Mo

Температурный режим прокаливания порошка МоО₃ и давление баллона с водородом

§3. Восстановление MoO₃ до Mo

Результат восстановления оксида молибдена МоО3 до металлического Мо водородом

- Независимо от метода получения изотопа ^{99m}Tc в конечном продукте присутствует как атомарный Tc, так и ионы пертехнетата натрия NaTcO₄ в виде TcO₄⁻
- Атомарный технеций не участвует в процессах метаболизма живого организма
- Главным компонентом радиофармпрепарата на основе пертехнетата натрия являются ионыTc/TcO₄⁻
- В фармакопейной статье по пертехнетату натрия имеется требование к процентному содержанию атомарного Tc – не более 5% от общего количества радиоактивных атомов
- Поскольку и атомарный Tc, и ионный TcO₄- являются одинаково радиоактивными, возможно измерение пропорции активностей Tc/TcO₄⁻ методом тонкослойной (бумажной) хроматографии.
- Для контроля радиохимической чистотой полученных медицинских изотопов материала был изготовлен специальный гамма—сканер.

На один конец тонкой полоски хроматографической бумаги наносят микрокаплю пертехнетата натрия и затем проявляют ее элюатом – метиловым спиртом

Ионная компонента продвигается к противоположному краю хроматографической полоски, а атомарная остается на месте

Измерение активности вдоль полоски бумаги дает информацию о соотношении Tc/[TcO4]-.

Блок-схема гамма-сканера

Общий вид гамма-сканнера

Результаты сканирования пертехнетата натрия

Результаты сканирования пертехнетата натрия в логарифмической шкале

Заключение

- Разработана новая технология изготовления и лазерной обработки мишени из порошка молибдена для увеличения механической прочности и теплопроводности.
- Разработана новая технология криогенного охлаждения мишени, что позволит значительно увеличить интенсивность пучка при облучении и, соответственно, эффективность наработки изотопа;
- Методом конечных элементов впервые проведены расчет и моделирование тепловой нагрузки на мишени при различных профилях пучка, режимах охлаждения и материалах мишенного диска. Данные расчеты позволят выбрать оптимальные параметры пучка и материал мишенного диска.
- Разработана технология неразрушающего контроля профиля протонного пучка с помощю датчика на вибрирующей струне, что позволит поддерживать оптимальные параметры профиля пучка в процессе облучения.

Заключение

- Разработаны различные модификации датчика на базе вибрирующей струны, которые могут быть использованы для контроля профиля пучка при производстве медицинских изотопов.
- Разработан и испытан комплекс для восстановления растворенной мишени после облучения из щелочного раствора после экстракции наработанного изотопа ^{99m}Tc.
- Разработаны и созданы системы контроля радиохимической чистоты полученного пертехнетата.

Список публикаций

- 1. **Г.С. Арутюнян**, Теоретическое обоснование возможности криогенного охлаждения твердотельной мишени при облучении пучком протонов циклотрона С18. Известия НАН Армении, Физика, 2016; 51(2): pp. 139-146.
- 2. S.G.Arutunian, M.Chung, **G.S.Harutyunyan**, A.V.Margaryan, E.G.Lazareva, L.M.Lazarev, L.A.Shahinyan. Fast resonant target vibrating wire scanner for photon beam, Review of Scientific Instruments, 2016; 87: pp. 023108/1-8.
- 3. S.G.Arutunian, J.Bergoz, M.Chung, **G.S.Harutyunyan**, E.G.Lazareva. Thermal neutron flux monitors based on vibrating wire. Nuclear Instruments and Methods in Physics Research A. 2015; 797: pp. 37-43.
- 4. A.Avetisyan, R. Avagyan, I. Kerobyan, R. Dallakyan, **G. Harutyunyan**, A. Melkonyan. Development of medicineintended isotope production technologies at Yerevan Physics Institute. In European Physical J. Web of Conferences; 2015, 93, pp. 08001/1-5.
- 5. A. Avetisyan, R. Dallakyan, R. Sargsyan, A. Melkonyan, M. Mkrtchyan, **G. Harutyunyan**, N. Dobrovolsky. The powdered molybdenum target preparation technology for ^{99m}Tc production on C18 cyclotron. Inter. J. Engin. Science and Innovative Technology, 2015; 4(3): pp. 37-44.
- 6. **Г.С.Арутюнян**. Гамма—Сканер для контроля радиохимической чистоты медицинских изотопов. Известия НАН Армении, Физика, 2015; 50(3): pp. 384-389.
- S.G.Arutunian, A.E.Avetisyan, M.M.Davtyan, G.S.Harutyunyan, I.E.Vasiniuk, M.Chung, V.Scarpine. Large aperture vibrating wire monitor with two mechanically coupled wires for beam halo measurements. Physical Review Special Topics – Accelerators and Beams, 2014; 17: pp. 032802/1-11.
- 8. S.G.Arutunian, I.E.Vasiniuk, G.Decker, **G.S.Harutyunyan**. Heat Coupling In Multi-Wire Vibrating Wire Monitor. In Proceedings of RuPAC 2008 (2008; Zvenigorod, Russia) p. 247-249.

Автор выражает огромную благодарность

- А. Аветисяну, Н. Добровольскому, А. Мелконяну и сотрудникам отдела производства и исследования изотопов
- С. Арутюняну и сотрудникам группы ускорительной диагностики

за большую помощь и поддержку в работе.

...спасибо за внимание!