

SRF Implementation in BESSY VSR for Picosecond X-ray Pulse Production

Andranik Tsakanian

Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin

International Workshop on Ultrafast Beams and Applications

04 - 07 July 2017

CANDLE, Yerevan, Armenia

- Introduction to BESSY II storage ring
- SRF Upgrade BESSY VSR & Highlights
- SRF Cavity Specific Designs
- HOM Power Levels in SRF Module
- Outlook

BESSY II Storage Ring

- BESSY II is a 1.7 GeV synchrotron radiation source operating for 20 years in Berlin
- Core wavelength in the range from Terahertz region to hard X rays

BESSY II Parameters					
Lattice	DBA				
Circumference	240 m				
Energy	1.7 GeV				
Current	300 mA				
RF Frequency	500 MHz				
RF Voltage	1.5 MV				
Bunch Length	15 ps				
Emmitance	6 nm rad				

BESSY II @ present

- Low alfa operation only 12 days/year (all beamlines) ------ Low flux
- Femtoslicing is continuously operated (only 1 beamline) -- Low flux

- Limited pulse length in storage ring $\sigma \propto \sqrt{\frac{\alpha}{\dot{V}_{\rm rf}}}$
 - At high current beam becomes unstable
- For ps pulses, flux is reduced by nearly 100

BESSY II @ present

- Low alfa operation only 12 days/year (all beamlines) ------ Low flux
- Femtoslicing is continuously operated (only 1 beamline) -- Low flux

- Limited pulse length in storage ring $\sigma \propto \sqrt{\frac{\alpha}{\dot{V}_{\rm rf}}}$ Machine optics
 - At high current beam becomes unstable
- For ps pulses, flux is reduced by nearly 100

BESSY II @ present

- Low alfa operation only 12 days/year (all beamlines) ------ Low flux
- Femtoslicing is continuously operated (only 1 beamline) -- Low flux

Can we design a system offering both possibilities simultaneously?

- Limited pulse length in storage ring $\sigma \propto \sqrt{\frac{\alpha}{\dot{V}_{\rm rf}}}$ Machine optics
 - At high current beam becomes unstable
- For ps pulses, flux is reduced by nearly 100

BESSY II @ present

- Supply short pulses down to 1.5 ps (100 × more bunch current)
- > Low α permits few 100 fs pulses
- Configure BESSY^{VSR} so 1.5 ps and 15 ps bunches can be supplied simultaneously for maximum flexibility and flux!

- Limited pulse length in storage ring $\sigma \propto \sqrt{\frac{\alpha}{\dot{V}_{rf}}}$ Machine optics Hardware (RF cavities)
 - At high current beam becomes unstable
- For ps pulses, flux is reduced by nearly 100

BESSY VSR Filling Patterns

- High concentration of long bunches populated with high current (flux hungry users)
- Few high current short bunches (slicing bunches ...)

BESSY VSR Filling Patterns

- High concentration of long bunches populated with high current (flux hungry users)
- Few high current short bunches (slicing bunches ...)

More short bunches (Extended)

High Population of long & short bunches at the same time

Simultaneous Store of long & short bunches

BESSY VSR

> SRF SYSTEM: 2@1.5 GHz & 2@1.75 GHz

CHALLENGES

- CW operation @ high field levels E=20MV/m
- Peak fields on surface (discharges, quenching)
- High beam current (lb=300mA),
- Cavity HOMs must be highly damped (CBIs)
- Exotic cavity design (damping end-groups)
- Integrating in existing storage ring
- Transparent Parking of SRF Module.

BESSY VSR SRF Cavity Designs

- Tune fundamental mode: field flatness, R/Q ...
- Control cavity HOM spectrum (off-resonance condition) during the design.

Strong HOM Damped SRF Cavity Concepts

Cavity with HOM WG Dampers

- ➢ 5 x Waveguide dampers, HOM loads (warm)
- Large beampipe radius better HOM propagation
- ➤ Waveguides are below cutoff for fundamental → can be moved close to the cavity for heavy damping.

Simulation Results	- for both	Cavity (TN	l ₀₁₀ π-mode)								
	1.5GHz	1.75GHz	Design goal				0				
Number of Cells		4					A I	1			
L _{active}	0.4 m	0.344 m								x → z	
Frequency [GHz]	1.4990	1.7489	3 th & 3.5 th harm.							У	
			of 499.65 MHz		4-Cell 0	avity	- 1.5	GHz	(Desi	gn-FA2)	
Q _{ext}	4.99*10 ⁷	4.28*10 ⁷		- ¹		ΠŃ	ΙΛ	Λ	ÌΛ		<u> </u>
G [Ω]	277.63	275.42		0.8	$-\frac{1}{1}$		+++	44	┼┟╴╄		15
E _{pk} / E _{acc}	2.32	2.30	≤ 2.4			_ 🖌 _ '		11	4_4		
B _{pk} / E _{acc} [mT / (MV/m)]	4.98	5.13	≤ 5.3	hax		1	13 1] {	1 1	ii	
R/Q [Ω]	386	380	≥ 90 per cell	<u><u> </u></u>		-†-	ti - 1		1-1		
Field Flatness - µ _{ff}	97%	99 %	≥ 95%	ы 0.2	-+	- +-		1		+	

 L_{active}

Wakefield Simulations for HOM Spectrum Control

Long Range Wakefield Simulation (Off-axis XY=2.1mm, 4mm bunch, 20m wake length)

Wakefield Simulations for HOM Spectrum Control

4cell – 1.75GHz Cavity Designs

Impedance from Wake run: Bunch 9mm on-axis, length-20m

BESSY VSR SRF Cavity Designs

Geometry Parameters for Accelerating Mode & HOM Control

- **Rx2/RxC** field flatness (not sensitive on other parameters)
- HOM spectrum shift is sensitive on cell-slope (for tuned fundamental)
- > Design:
 - 1. Fix iris radius (Shunt impedance)
 - 2. Ensure field flatness >95% (Rx2/RxC , fixed slope)
 - **3.** Tune fundamental frequency by r2, check B-peak.
 - 4. Check HOM spectrum

Spectrally Weighted with

"Baseline" pattern 1.75GHz 1.5GHz **Cavity Type** Port No. HOM Power [W] 1.50 GHz Cavity 'n. $1 - FPC^{(1)}$ 33.8 37.9 1.75 GHz Cavity a. $2 - WG^{(1)}$ 105.3 154.7 8.0 Spectrum [0.6 0.4 $3 - WG^{(1)}$ 151.4 103.8 $4 - WG^{(2)}$ 88.5 108.3 0.6 $5 - WG^{(2)}$ 109.8 90.2 $6 - WG^{(2)}$ 111.6 90.6 Make Vake 7 – BmP^(Upstream) 235.4 200.5 8 – BmP^(Downstream) 275.9 327.1 Total Coherent 1079 1146 0 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 None-Coherent 1293 1300 Frequency [GHz]

- Both cavities are not hitting any of beam resonances that are multiple of 250MHz (Coherent and none-coherent powers are at the same level).
- Cornell's ERL cavities are designed to run at about 100-200W HOM Power.

Signal Spectral Weighting Technique

Signal Spectral Weighting Technique

HOM Power of Single Cavity 1.5GHz

HOM Power spectrum (Baseline) at Different Ports

HOM Power of Single Cavity 1.5GHz

HOM Power of Single Cavity 1.5GHz

Design of the 1.5 GHz BESSY VSR coupler

FPC characteristics for HOMs

- In FPC at higher frequencies (HOMs) the EM \succ waves are mainly reflected back from first RF windows - forms standing wave. True for all coax modes – TEM, TE11 ...
- > One should include the first half of the FPC in wake & Eigenmode simulations – to analyze how this fact reflects on HOM power balance & to avoid possible trapped mode in end-group.

0

-5

-10

-15

-20

-25

-30

-35

1.4

1.6

1.8

2

2.2

Frequency / GHz

2.6

2.8

3

2.4

Waveguide Bend Broadband Characteristics

- TE10 mode couples into different modes after bend: TE10, TE11, TM11..., depending on excitation frequency & the cutoff of each WG mode !
- At high frequencies the TE10 is scattered from the bend into several modes, i.e. acts as mode mixer. At optimized 30mm inner bending radius the reflection is minimal in broadband frequency sense.

BESSY VSR Cold-String: HOM Loads

Water-cooled HOM loads (room temperature 300K) Specifications: 460W per load Design, fabrication and tests @ JLab

1.5 GHz 5-cell Copper prototype

1.5 GHz Single-cell Nb prototype

HOM Power Levels in SRF Module

Wakefield Simulations

- Long Range Wakes~ 20m
- Spectral Weighting of all Port Signals with Beam Spectrum
- Expected HOM Power Levels & Spectrum
- Efficiency of HOM Damping

- Analyze different cavity arrangements in the module to reach optimal operation conditions with equally distributed power portions in warm HOM loads.
- Study on different FPC locations (Upstream Downstream) to minimize the flown HOM powers & redirect to wavguide dampers. (RF window issues)

HOM Power Levels in SRF Module	VSR Mo	dule Powe	r Levels: B	aseline Filli	ing Patern
	Port	LSSL1	LSSL2	SSLL1	SSLL2
BESSY VSR – SRF Module	1	28,9	28,9	102,2	58,6
Setup – LSSL2	2	102,2	102,1	216,0	217,4
1 75GHZ	3	102,2	102,1	216,0	217,4
Cav1.	4	157,0	157,1	178,7	179,0
CON-1.5GHZ	5	157,0	157,1	178,7	179,0
	6	195,6	195,5	204,6	231,7
THE SCHERE SCHERE	7	46,3	45,8	25,7	25,4
CavL.	8	230,3	230,1	140,2	140,1
	9	230,3	230,1	140,2	140,1
airectio.	10	163,2	163,7	165,5	165,9
Punch D.	11	163,2	163,7	165,5	165,9
bu bu	12	221,8	221,3	225,7	223,6
	13	52,6	53,0	53,1	52,4
9 SRF module setup - LSSL2	14	249,6	247,2	254,2	251,8
$= \frac{8}{3}$ Data: wake-20m of 9mm bunch	15	249,6	247,2	254,2	251,8
	16	185,2	163,9	195,2	171,1
	17	185,2	163,9	195,2	171,1
\mathbf{F}	18	240,9	199,9	263,6	207,6
-5 -5 -5 -5 -5 -5 -5 -5	19	96,2	24,2	59,7	23,7
	20	201,5	115,1	210,2	116,2
σ_{3} - \cdot + + \cdot + + \cdot + \cdot + \cdot +	21	201,5	115,1	210,2	116,2
	22	86,0	159,5	90,0	167,6
	23	86,0	159,5	90,0	167,6
	24	97,3	202,8	96,5	208,5
	25	246,6	246,1	227,6	225,0
Frequency [GHz]	26	269,4	330,2	299,0	357,7
i i equeilo y [eliz]	Total	4245 W	4225 W	4457 W	4432 W

1.75 GHz Cavities

сл

GHz

ς GHz

18

On-Axis Voltages of VSR Module

On-Axis Voltages of VSR Module

Optimal Setup for Coupler Kick Compensation & HOM Power Equal Distribution Along the Module

Optimal Cavity Arrangement in the Module

Optimal Setup for Coupler Kick Compensation & HOM Power Equal Distribution Along the Module

Space availability in the tunnel should be checked. On the back plane is synchrotron radiation beamline. BESSY VSR

Synchrotron Light Power Depositions

Collimator in quad: 16mm off-axis Collimator shielded bellow: 26mm radius Moveable collimator in taper: ≤16mm off-axis Mandatory to fetch power outside the module or at 5K-level

P _{rad} @	collimator in quadrupole	on moveable collimator	collimating bellow	leaving cold module				
Moveable not activated	63 W	0 W	11 W	15.3 W				
Data courtesy of Markus Ries								

Courtasy of H.-W. Glock

- Study effects of undamped energy propagated throug the beam-pipes to the ring. Heating issues.
- Concatenation studies . Cavity-cavity coupling, energy damping and impedances.
- Sensitivity analyses on Cavity Deformations (Fabrication Tolorances)
- Thermal studies (waveguides, flanges...).
- Engineering challanges & solutons.

... And much more ongoing R&D.

- Study effects of undamped energy propagated throug the beam-pipes to the ring. Heating issues.
- Concatenation studies . Cavity-cavity coupling, energy damping and impedances.
- Sensitivity analyses on Cavity Deformations (Fabrication Tolorances)
- Thermal studies (waveguides, flanges...).
- Engineering challanges & solutons.

... And much more ongoing R&D.

Thank You for Your Attention !

A COLD BEAD-PULL TEST-STAND FOR SRF CAVITIES

- 1st Cold bead-pull test stand commisioned and in operation
- Form factor of the bead extracted by means of a copper pillbox at 1.8 K
- Experimental study of the effects created by cooldown process and tuner actuation on field profile
- Sucessfully commissioned a 1.3GHz 9-cell Tesla cavity for the fundamental passband. Characteristic parameters such as R/Q can be experimentally determined.
- Study of the field profile and R/Q for different HOM modes

Cold Test-Stand

9-cell Tesla cavity mounted on the test-stand before the installation of the pillbox (a). Pill-box cavity mounted with the wire system inside the HobiCat cryomodule (Niobium 9-cell cavity hidden behind) (b).

Layout of the 9-cell Tesla cavity mounted within HoBiCaT test cryomodule [1,2].

Courtesy of A. Velez (HZB)

[1] A. Vélez, A. Frahm, J. Knobloch, A. Neumann "Developments on a cold-bead-pull test stand for SRF cavities". Proceedings of SRF2015, Whistler, BC, Canada. TUPB078.

[2] O. Kugeler, A. Neumann, W. Anders, and J. Knobloch, Review of Scientific Instruments 81, 074701 (2010).