Considerations of an Ultrafast Electron Diffraction experiment at

04.07.2017

G. Kourkafas, T. Kamps, E. Panofski

Yerevan, Armenia Ultrafast Beams and Applications workshop in collaboration with: Max-Born Institute, HZB team

- Accelerator activities at HZB
- MHz MeV Ultrafast Electron Diffraction (UED)
- Probe proof-of-principle experiment at GunLab
- Future pump-probe plans: GunLab II
- Collaborations
- Summary and outlook

Accelerator Physics at HZB :

Courtesy T. Kamps

Operation and development of light sources

- BESSY II (est. 1999): storage ring for THz to hard X-rays from 50 beamlines (32 IDs + 14 dipoles)
- Top-up operation: 300 mA at 500 MHz with 15 ps bunches
- Specialties: polarized X-rays, lowalpha mode (2 ps), femtoslicing (50 fs)

5mA

DECCV	Dama	
BESSY	Para	meters

Energy	1.7 GeV
Circumference	240 m
Hor. emittance	5 nm rad
Max RF voltage	2 MV
α Iow-α	7.5×10^{-4} 3.5×10^{-5}

1mA multi bunch #1 #400

"single bunch"

slicing

TopUp

9 days

Accelerator Physics at HZB : Content of the second second

Shorter pulses while maintaining high average brilliance

The basic idea:

$$\sigma_t \propto \sqrt{\frac{\alpha}{V'}} \qquad I \propto \alpha$$

Keep same operation parameters – add overvoltage RF cavities at harmonics of 500 MHz

- Long & short pulses simultaneously
- Low-α mode down to 400 fs

SRF system for continuous operation at high voltage (A. Tsakanian, Wed. 09:50)

4 x 500 MHZ cavities \rightarrow 15 ps + 2 x 1.5 GHz \rightarrow 2.4 ps + 2 x 1.75 GHz \rightarrow 1.7 ps and 15 ps

Accelerator Physics at HZB :

ار bERLinPro

Single-pass Energy-Recovery Linac: tunable parameters + high current using 100% duty cycle, suitable for EUV photons

repetition rate	1.3 GHz
max beam current	100 mA
Bunch length	< 2 ps
norm. emittance	< 1 µm·rac
max heam energy	50 MeV

Operation expected in 2018

Performance determined at source

Accelerator Physics at HZB : GunLab

HZB Helmholtz Zentrum Berlin

- Electrons, a supplement to photons
 - More suitable for surfaces, thin films, gas-phase samples, due to:
 larger scattering cross-section (shorter elastic mean free path)
 - Considerably less damage in biological samples:
 Elastic/inelastic scattering ratio 3 times smaller
 - Overall gain in efficiency of $> 10^8$ potentially possible
 - Facility of smaller size and cost (compared to 3rd-4th generation light sources) with higher flexibility in beam parameters (control with EM fields)

Citing: P. Musumeci, T.van Oudheusden, G. Sciaini and RJD. Miller

- Novel properties from relativistic beam energies
 - few MeV e- beams allow:
 - mÅ wavelengths
 - improved velocity mismatch for gas-phases
 - better beam manipulation from suppressed space charge
 - Short pulses (< 100 fs) possible: time-resolved structural dynamics → movies of atomic motions!
 - higher charge and lower emittance \rightarrow
 - higher brightness for single-shot measurements (~100 fC @ 100 μ m)
 - improved longitudinal and transverse coherency (tens of nm)
 - Possibilities: polarized probe electrons and Microscopy (UEM)

Citing: G. Sciaini and RJD. Miller doi:10.1088/0034-4885/74/9/096101

MHz MeV UED at HZB

- High repetition rates and stability from CW SRF technology
 - Improved stability + temporal resolution from Continuous Wave operation:
 amplitude and phase RF jitter much smaller compared to pulsed mode_____

$$\tau^{2} = \tau_{pl}^{2} + \tau_{pe}^{2} + \tau_{VM}^{2} + \tau_{T}^{2}$$

- MHz repetition rate of equally spaced pulses (not burst mode):
 - reduced measurement time for multi-shot experiments
 - especially suited for gas (and other) samples
- Ultra-high vacuum (UHV) conditions (< 10⁻⁹ mbar)
- Target scientific cases
 - Interactions of e-, phonons and spins in photo-induced excitations / phase transitions: CDW materials, heterostructures, manipulation of magnetization in garnets, WDM, ...
 - … linked with high-temperature superconductivity, colossal magnetoresistance, ferrimagnetism and ferromagnetism

Proof-of-principle experiment

• Static MeV diffraction experiment at GunLab is planned

- Demonstrate first diffraction pattern from SRF gun (10 nm thick Au sample)
- Additions / modifications to existing beamline:
 - sample holder
 - collimators
 - detector

Proof-of-principle experiment: sample chamber

- Modification of existing diagnostic station at 2.5 m
 - UHV conditions require differential pumping:
 - existing design experience from ELBE
 - Additional actuator for pinhole collimators available
 - Transverse 4D alignment mechanism wished

Georgios Kourkafas | 04.07.2017 Considerations of an Ultrafast Electron Diffraction experiment at HZB inner

Proof-of-principle experiment: detector

EMCCD Detector from MBI

- Andor iXon 888 Camera with single-photon sensitivity
- 26 fps read-out for 1 MP resolution, 670 fps for 128x128 Crop with 30 MHz pixel clock speed

• Multiscreen station after 1.7 m drift

- Digital Micromirror Device (DMD) to deflect 0th peak for high dynamic range readout
- Additional intensity collimator (nail) or phosphor screen with hole

Proof-of-principle experiment: simulations

- ASTRA simulations for the expected e- beam parameters
 - Multi-objective optimization of photo-injector settings, judging on...
 - ... compromise between various conflicting beam parameters:
 - charge (1)
 - momentum (\$)
 - bunch length (\downarrow)
 - emittance (\downarrow)
 - momentum spread (\downarrow)
 - transverse coherence length (\uparrow)
 - beam size (\uparrow)
 - For a specific bunch charge and momentum, the optimization is based on a trade-off between emittance and bunch length, while evaluating the rest parameters...

Proof-of-principle experiment: 1 pC case study

Considerations of an Ultrafast Electron Diffraction experiment at HZB

Future plans: 10 fC case study with 100 fs laser

Considerations of an Ultrafast Electron Diffraction experiment at HZB

z [m]

Future plans: pump-probe experiment

- Arrival time monitors considered:
 - Plasma lens, as simpler but less accurate technique (ps resolution)
 - Grating enhanced ponderomotive scattering, as a more elaborate solution (down to fs + bunch length measurement)
 - ... more ideas welcomed

Future plans: alternative approaches (CTR)

Continuously Time Resolved UED

 truly single-shot measurement: <u>continuous</u> diffraction image which can be <u>temporally-resolved</u> using a transverse RF deflector

- + no compression needed, single pump pulse \rightarrow no jitter term in resolution...
- ... determined by deflector instead: sub-100 fs resolution possible with 35 kW deflecting power and optimized beam dynamics
- convolution with energy spread, more complicated analysis, less explored

Future plans: alternative approaches (DLW)

• Passive bunching with Dielectric-Lined Waveguides

• use <u>wake-fields</u> to modulate the energy and thus the particle density \rightarrow 7% of the bunch squeezed in few fs after 0.5 m

- + low-cost, no need for bunching synchronization (free of RF jitter)
- challenging for low charges: tiny transverse dimensions of structure, very precise alignment needed
- collimation of the low-density tails required

Future plans: facility upgrade

- Traditional bunching approaches also considered:
 - RF cavity for ballistic bunching
 - Dogleg for magnetic compression
 - But in principle: beamline as simple as possible! → additional components complicate beam dynamics and introduce sources of error
- GunLab II: existing GunLab + extended drift
 - UED and FEL mode
 up to 200 pC @ 1 MHz
 - Sufficient drift for additional focusing lenses and near + far detector for increased accuracy
 - Underground bunker
 for radiation protection

- Established
 - MBI (S. Eisebitt, M. Schnuerer, I. Will) : samples, detector, laser development
- In contact with
 - Mainz University (J. Demsar)
 - Fritz Haber Institute Max-Planck (R. Ernstorfer)
- Looking for new collaborators and users!

Summary

- UED is a complementary tool for atomic observation with novel features for the established community at HZB and beyond
- Static proof-of-principle experiment at GunLab on schedule, using the existing experience on CW SRF photo-injectors
- Facility upgrade is planned: new building with fs laser for pump-probe experiment at 1 MHz repetition rate

• Outlook

- Optimize probe beam parameters, adjust them to user needs
- Acquire / develop cutting-edge beam diagnostics
- Investigate the possibility of Ultra-fast Electron Microscopy
- We are looking forward to your feedback and collaboration

THANK YOU FOR YOUR ATTENTION

