

Faraday Cup Simulation for Electron Beam Measurements

V. V. Gambaryan¹, K.V. Gubin², A.E. Levichev¹, Y.I.Maltseva¹ ¹Budker Inst. of Nuclear Physics SB RAS, Novosibirsk, Russia ²Institute of Laser Physics SB RAS, Novosibirsk, Russia

Ultrafast Beams and Applications

04-07 July 2017, CANDLE, Armenia

BINP

- Accelerators
- Detectors
- Plasma facilities
- Power and digital electronics
- Theoretical
- Cancer therapy
- Siberian Synchrotron Radiation Centre
- Workshop (0.25 km²)

BINP Location

VEP1- 1963

BINP founded at 1958 by Gersh Itskovich Budker

ADA – 1961 LNF in Frascati, Italy

Name	comiss. year	E, GeV	Brigtnes, 10 ³⁰ , cm ⁻² s ⁻¹	Circumfery , km
VEPP4M	1994	1,0	20	0,366
VEPP2000	2006	6	100	0,024
Super c-tau	?	2.5	100 000	0,780

10⁻⁷ beam energy measurements

- 3 электрон-позитронный конвертор
- 4 синхротрон Б-4 (350 МэВ)

10⁻⁷ beam energy measurements accuracy

3 – электрон-позитронный конвертор 4 – синхротрон Б-4 (350 МэВ)

Injection complex

D.Berkaev, VEPP-5 INJECTION COMPLEX: TWO COLLIDERS OPERATION EXPERIENCE http://accelconf.web.cern.ch/AccelConf/ipac2017/papers/wepik026.pdf

Injection complex

Injection complex

http://accelconf.web.cern.ch/AccelConf/ipac2017/papers/wepik026.pdf 07.07.2017 Vaagn Gambaryan (BINP SB RAS)

Outline

- Motivation
- Calculation FC capacity using simple theoretical model
- Calculation FC capacity with EM solver
- Calculation FC capacity with PIC solver
- FC radio frequency analyze
- Conclusion

Motivation

Laser-driven Compton light source in ILP SB RAS in collaboration with BINP SB RAS

Figure source: Rendering by Kwei-Yu Chu (https://lasers.llnl.gov/science/photon-science/mega-ray)

Motivation

Figure source: Albert, F., et al. "Laser wakefield accelerator based light sources: potential applications and requirements." *Plasma Physics and Controlled Fusion* 56.8 (2014): 084015. DOI: 10.1088/0741-3335/56/8/084015

Two experimental chambers (without the compressor chamber):

1 – supersonic gas jet, 2 – focusing mirrors, 3 – laser beam for diagnosing the jet density, 4 – electron spectrometer magnet, 5 – Faraday cup, 6 – phosphor screens, 7 – electron beam, 8 – driving laser beam, 9 –scattered laser beam.

Two experimental chambers (without the compressor chamber):

1 – supersonic gas jet, 2 – focusing mirrors, 3 – laser beam for diagnosing the jet density, 4 – electron spectrometer magnet, 5 – Faraday cup, 6 – phosphor screens, 7 – electron beam, 8 – driving laser beam, 9 –scattered laser beam.

Two experimental chambers (without the compressor chamber):

1 – supersonic gas jet, 2 – focusing mirrors, 3 – laser beam for diagnosing the jet density, 4 – electron spectrometer magnet, 5 – Faraday cup, 6 – phosphor screens, 7 – electron beam, 8 – driving laser beam, 9 –scattered laser beam.

Faraday cup purpose and requirements

- FC materials have to be nonactivated, nonmagnetic, vacuum usable.
- FC has to provide full stopping of primary beam as well as secondary charged particles. It means the total charge losses should be less than 1%.
- Compact size (boundary dimensions 20-25 cm). Device must be placed inside limited volume of experimental vacuum chamber.
- Small capacity, not more than 10-30 pF (several tens pF including output circuit). It is caused by small bunch charge and by requirement to register the signal with sufficiently high precision.

Electron beam stopping simulation

L_W, mm

Dependence of charge reflection on thickness of Al layer for 10, 50, 100 MeV electron beam.

Number of penetrated particles for different W cylinder sizes, %. Primary beam energy is 100 MeV.

Simulations was done by Yulia Maltseva using GEANT4 code.

FC geometry

Simple FC capacity model

Calculation FC capacity with EM solver

	Gap, mm	Capacity, pF	Outer dimensions, mm
	10	~53	110x100x80
\langle	30	~15	150x120x140
	50	~ 6	190x160x180

$$C = 2 \cdot 7.52 \cdot 10^{-12} = 15.04 \, pF$$

Calculation FC capacity with PIC solver

07.07.2017

Calculation FC capacity with PIC solver

C = 15.1 pF (EM simulation give 15.01 pF, simple theoretical 7.8 pF)

FC radio frequency analyze

Experimental results

Experimental results

BNC connector ~5pF

Total capacity should be equal to 15 pF+30 pF+5 pF=50 pF.

Experimental results

BNC connector ~5pF

Total capacity should be equal to 15 pF+30 pF+5 pF=50 pF.

30 cm 100pF/m

 $U(t) = U_0 \exp\left(-\frac{t}{RC}\right) \left(1 - \exp\left(-\frac{t}{t}\right)\right)$

 $U_0 = 1.37 \text{ V}$ RC = 5.62 µs $\tau = 0.127 \text{ µs}$ C = 52.8 pF (from fitting experimental data) $q = U_0 C$ Absorbed beam charge equals to 72.3 $pC (4.52 \cdot 10^8 \text{ particles}).$

Conclusion

- Faraday cap optimal design obtained
 - beam stopping ability
 - capacity value
- Capacity simulations complited
- FC Q-factor estimated
- Calculation in good agreement with experimental data
- pC-rate beam charge measurement ability approved

Thank you. Do You have any questions?

Accuracy checking

