Design of the ultrashort electron bunch complex at Budker Institute of Nuclear Physics (Novosibirsk)

Mariya Maltseva

Ultrafast Beams and Applications Yerevan, Armenia 04-07 July 2017

Outline

- Introduction
- Main elements of the complex
- Possible use: plasma wakefield acceleration
- Mm wavelength structure excitation
- Focusing system for mm wavelength structures: estimations and simulations
- Conclusion

Introduction

Mm wavelength structures allow obtaining higher acceleration gradient (cavities and dielectric structures)
Perspectives for use: excitation of mm wavelength structures, plasma wakefield

- acceleration, fast electron diffraction
- •There is need in focusing system for small apertures: is it possible to create such a system? What should it be?

Goal: taking into account structure sizes and beam parameters, study transverse dynamics and possibility of focusing

Main elements of the complex

All the elements are being produced at BINP

Klystron

Parameter	Value
Frequency	2856 MHz
Peak power	50 MW
Average power	10 kW

Mariya Maltseva (BINP SB RAS, NSU)

RF photogun

Accelerating structure

S-band disk loaded accelerating structure

Possible use: plasma wakefield acceleration

Advantages of the method (in comparison with selfmodulation of the long beam in plasma, private discussion with A. Petrenko):

•Higher accelerating gradient

•More beam stability

•Perspectives for proton beams (it is difficult to obtain short proton beam)

250 512.0 511.5 200 511.0 510.5 50 (MeV) T 510.0 00 509.5 LЦ 509.0 50 508.5 508.0 -30 -20 -10 20 30 0 \bigcirc 30 -30 -20 -1 ()20 ()s (mm) (mm)S

It's enough ±1.2 MeV energy spread for 500 MeV beam to bunch it after dispersion magnet system

Mm WL structure excitation

Focusing system: preliminary estimations

Mariya Maltseva (BINP SB RAS, NSU)

Focusing system

Problem: need in the special focusing to transport the beam through the channel with small (~0.2 mm) aperture

Beam parameter	Value
Energy, MeV	10-40
Charge, nC	2
Duration, ps	2
Normalized emittance, π mm·mrad	5-10
Initial radius a, mm	5
Final radius <i>b</i> , mm	0.2

What system to choose: solenoid with 2 T is too complex device

To what distance it is possible to transport the beam trough the small aperture?

Focusing system

Mariya Maltseva (BINP SB RAS, NSU)

Focusing system field

Magnetic field, T

Focusing system: ASTRA simulations

$$\varepsilon_n = 10\pi \cdot mm \cdot mrad$$

Beam radius, mm

Beam profile

x mm

Mariya Maltseva (BINP SB RAS, NSU)

Focusing system: ASTRA simulations

$$\varepsilon_n = 5\pi \cdot mm \cdot mrad$$

Beam radius, mm

x mm

Mariya Maltseva (BINP SB RAS, NSU)

Conclusion

- Complex with ultrashort electron bunches is being developed
- Taking into account feasible beam parameters after the gun, we studied possibility of focusing to the mm wavelength structures
- It was proposed to use permanent magnet system with radial magnetization
- Beam dynamics confirmed possibility to obtain small beam size in such a system
- It is possible to transport the beam in the proposed system to the needed distance

Work was supported by Russian Science Foundation (project №14-50-00080)

Thank you for your attention!