

Laser driven facility for irradiation experiments, two-photon microscopy and microfabrication

Ultrafast Beams and Applications UBA17 04-07 July, 2017

Presenter: Arsham Yeremyan

Outline

Parallel operation of AREAL linac and DELTA stations

- Femtosecond laser system: specs and features
- Beam delivery schemes, control and measurements

Research fields and experimental capabilities

- Laser driven microscopy and microfabrication stations
- Fields of applications and multidisciplinary research capabilities
- Upcoming upgrades and extensions
 - □ Tunable laser, THz spectroscopy, pulse-picking
- Applications
- **Summary**

Femtosecond Laser System

Measurements and control

IR and UV pulse profile monitoring (Spiricon)

Energy/Power measurements

11 July 2017

Femtosecond Laser System

Specifications and features

	t-pulse	S-pulse	FHG	SHG*	THG*
Wavelength	1030 nm	1030 nm	258 nm	515 nm	343 nm
Pulse width	250 fs	400 fs8 ps	400 fs8 ps	400 fs8 ps	1—8 ps
Rep. Rate	50 MHz	1-100K Hz	1-1K Hz	1-100K Hz	1—100K Hz
Energy/pulse	20 nJ	Up to 2 mJ	Up to 425 uJ	Up to 1mJ	

* Conversion implemented in DELTA uFab

- Synchronization with Master Oscillator
- *Remote control*
- *IR and UV pulse-to-pulse energy stability* ~0.5 %

Electron irradiation experiments on AREAL linac

Experiments

Dose-rate effects on DNA, radiation-induced defects in semiconductors, dielectrics, ferroelectrics, etc.

Fields

Genetics Biology Molecular Physics

Microelectronics

Solid State Physics New materials

Yerevan State Univ Polytechnic Univ. Yerevan Phys. Inst Inst. Mol. Biology Inst. Phys. Research CANDLE Institute

Groups

Two-Photon Microscopy: Basics

DELTA Two-Photon Microscope: Features

- •Sutter Instruments
- Galvano-scanning system
- •Multi-channel measurements with different filters and PMTs
- •3D-acquisition capability, etc.

Operating Parameters

Excitation: 1030 nm Fluorescence: >515 nm Energy per pulse: up to 20 nJ Pulse length: 280 fs Intensity in focal plane: up to ~10¹³ W/cm²

Two-Photon Microscopy

Experiments

lactobacteria and yeast

Live brain imaging

Identification of dead and live soil microorganisms

Other....

Interaction of

Groups

Institute of Molecular Biology NAS RA

Yerevan State Medical University

Armenian National Agrarian University/ International Association for Human and Animals Health Improvement

CANDLE SRI

A.I. Alikhanian National Science Laboratory (YerPhl)

Institute for Physical Research NAS RA

11 July 2017

Two-Photon Microscopy

Possibility of multiphoton excitation microscopy of inorganics

Image scale: 200 x 200 um

ZnO:Li hydrothermal

ZnO:Li -solid phase growth

ZnO:Er -solid phase growth

SHG microscopy of doped ZnO surface

DELTA uFAB station

11 July 2017

DELTA uFAB station

DELTA uFAB station

Operating Parameters

Pulse duration: 400 fs -8 ps
Repetition rate: 1 Hz -100 kHz
Average power: up to 8 W
Pulse energy: up to 2 mJ (1030 nm) and 1 mJ (515 nm)
Wavelengths 1030 nm, 515 nm, 343 nm
Sample positioning accuracy: ±50 nm
Travel range: 100 x 100 mm (XY), 25 mm (Z)

Femtosecond laser processing of materials

□ Ultrashort pulses → new mechanisms of laser-matter interactions
Suppression of heat diffusion to surrounding regions → improvement of

Suppression of heat diffusion to surrounding regions -> improvement of quality and spatial resolution for **nanoscale** fabrication

□ High peak intensities → nonlinear absorption Multiphoton absorption in transparent materials → both surface (2D) and volume (3D) writing of micro- and nanostructures becomes feasible

Processing of practically all materials: metals, semiconductors, glasses, polymers, ceramics, and biological samples

Femtosecond laser processing

Direct laser writing, micromachining, laser-assisted deposition, 2D patterning

Typical Applications

Micro- and nanoelectronics Semiconductor technology, etc

Bulk processing of transparent materials

Microfluidics networks, waveguides, labs-on-a-chip

2-photon polymerization, ablation

3D photonic crystals, MEMS biomedical

Other...

EXPERIMENTAL STATIONS

Upcoming upgrades and Extensions

1. Pockels cell 2. Driver 3. Polarizing beamsplitter 4. Waveplate

- Designed specifically for simultaneous operation of AREAL and uFab
- *N out of 50K pulses with switched polarization can be redirected from the train of amplifier output*
- Sync with Master Oscillator

EXPERIMENTAL STATIONS

Upcoming upgrades and Extensions

<u>Tunable femtosecond laser</u> + Sync unit with MO

cooperation with AVESTA (Russia)

Ti:Sapphire, 750-950 nm, 100 fs, 80MHz

Applications

•2P-microscopy; extended range of fluorophores

Time-resolved experiments

other

11 July 2017

EXPERIMENTAL STATIONS

Upcoming upgrades and Extensions

THz generation to be implemented at CANDLE

<u>Current activities</u>

•<u>Fabrication of glass-based optical elements</u>: Laser beam shaping elements "fork" gratings for optical vortex generation diffraction gratings

<u>2-photon polymerization</u>:

Liquid-crystal alignment microstructures Micro-needles, cantilevers, microprobes

•<u>Patterning of semiconductor and</u> <u>metallic surfaces</u>: micro-contacts, nano-film patterning, photon electron beam apertures

Current activities

Laser Beam Shaping

Conversion of laser irradiance distribution

Principle

<u>Current activities</u>

Laser Beam Shaping

Design and fabrication

Design Parameters Wavelength Beam size Traveling (focal) distance Phase depth

 $(0,\pi)$ binary phase function (concentric rings) are laserwritten IN/ON glass

Integrated π -Shaper

Current activities

Laser Beam Shaping

<u>Current activities</u>

Optical Vortex Beams

Helically phased beams

- > Azimuthal phase dependence $\exp(i\ell\phi)$
- Optical vortex
- ▶ Carry OAM of ℓħ per photon

Excitation beam

quenching beam

"Fluorescence -allowing" beam

Potential Applications

- Optical communications
- Coronagraphy
- Micro-particle manipulation (optical tweezers)
- Beam shaping
- STED (2P-)microscopy

11 July 2017

<u>Current activities</u>

Optical Vortex Beams

Computer-generated "Fork" holograms as a source of phase singularities

Features:

- Glass provides high damage threshold (critical with high power applications)
- Efficiency can be increased by fabrication of volume holograms

Laser-written on glass

<u>Current activities</u>

Optical Vortex Beams

CGH-Computer Generated Hologram laser-written ON/IN glass

<u>Current activities</u>

Optical Vortex Beams

<u>Current activities</u>

More glass-based optical elements

11 July 2017

<u>Current activities</u>

Two-photon polymerization

Applications

- bio-medical: micro-needles for transdermal drug delivery, microelectrodes, etc.
- 3D photonic crystals
- Liquid crystal devices
- Micro-and nano-cantilevers, sensors
- MEMS (Micro- Electro-Mechanical Systems)

<u>Current activities</u>

Surface patterning

Applications

micro-contacts nano-film patterning photon electron beam apertures

11 July 2017

Summary

- Fundamental, 2nd, 3rd and 4th harmonics of femtosecond laser are used for parallel operation of 2-photon scanning microscope, microfabrication and linac stations
- This provides unique capability to perform a comprehensive chain of multidisciplinary experiments using ultrafast electron and photon beams
- Forthcoming supplements and developments are highlighted which will further extend the experimental capabilities
- A summary of results to demonstrate the diversity of potential applications

Thank you