

Ultrafast Beams and Applications 04-07 July 2017, CANDLE, Armenia

Experimental Demonstration of Spectral Self-Compression of Supercontinuum Radiation Fraction

H. Toneyan^{1,2}, M. Sukiasyan^{1,2}, V. Avetisyan¹, and L. Mouradian^{1,2}

¹Ultrafast Optics Laboratory, Yerevan State University, Armenia ²CANDLE Synchrotron Research Institute, Yerevan, Armenia E-mail: h.toneyan@gmail.com

Spectral and temporal compression

Spectral compression

comparative experimental studies of various schemes:

H.Toneyan, et al "8x, 12x, and 23x Spectral Compression by All-Fiber, Classic, and Similaritonic Techniques" FiO 2014, paper FW4D.5.

> 12x SC by classic technique

8x all-fiber SC

23x aberration-free SC by the SFGsimilaritonic technique

Soliton pulse compression

L.F.Mollenauer, et al "Extreme picosecond pulse narrowing by means of soliton effect in single mode fibers" Opt. Lett. **8**, 289 (1983). L.F.Mollenauer et al "Experimental-observation of picosecond pulse narrowing and solitons in optical fibers" Phys. Rev.Lett. **45**, 1095 (1980).

Recent progress in the technology of photonic crystal fibers and nanowires

T.Balciunas, et al "A strong-field driver in the single-cycle regime based on selfcompression in a Kagome fibre" Nat. Commun. 6:6117 doi: 10.1038 / ncomms 7117 (2015).

A.A.Amorim, et al. "Sub-two-cycle pulses by soliton selfcompression in highly nonlinear photonic crystal fibers" Opt. Lett. **34**, 3851 (2009). M.A.Foster, et al "Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires" Opt. Express. **13**, 6848 (2005). A.B.Salem, et al "Soliton-self compression in highly nonlinear chalcogenide photonic nanowires with ultralow pulse energy" Opt. Express **19**, 1995510 (2011).

Analytical discussion of self-SC process

GVD: $\widetilde{A}(\omega, z) = \widetilde{A}(\omega, 0) \exp[-i\omega^2(z/L_p)/2]$

SPM: $A(t,z) = A(t,0) \exp[in_2\beta_0 | A(t,0)|^2 z] \approx$

 $\approx A_0(t) \exp(iz/L_{NL}) \exp[-it^2(z/L_{NL})]$

t running time centered frequency Φ coefficent of dispersion $\beta_{0,2}$ n_2 kerr index of silicia spectral bandwidth $\Delta \omega_{0}$ τ_{0} initial time duration $R = L_D / L_{NL}$ NL parameter dimensionless $\zeta = z/L_{\rm p}$ propagation distance

 $L_{NL} < L_{D}$ Soliton effect compression $L_{NL} > L_{D}$ Self spectral compression

 $L_{NL} \equiv [\beta_0 n_2 | A(0,0) |^2]^{-1}$ $L_D \equiv (\beta_2 \Delta \omega_0^2)^{-1}$

Soliton-effect compression

Initial experiment with HCF

experimental setup

Numerical study of self-SC process

M.Sukiasyan, et al "Numerical Study of Femtosecond Signal Spectral Self Compression" UBA17 Workshop, 2017

Setup of self-SC for supercontinuum radiation

Experimental results of self-SC of supercontinuum fraction

Conclusion

We experimentally demonstrated:

- 30% self-SC in a hollow-core fiber @800nm central wavelength
- 4x self-SC of fraction of noisy supercontinuum spectrum

THANKS

Numerical demonstration of Gaussian pulse self-SC

Experimental results of self-SC of supercontinuum fraction

