

National Polytechnic University of Armenia

### The Effects of Ultrafast Irradiation on Ba<sub>x</sub>Sr<sub>1-x</sub>TiO<sub>3</sub> Ferroelectric Thin Films

### Norayr Martirosyan

NPUA, Teryan 105, 0009, Armenia E-mail: <u>n.martirosyan@polytechnic.am</u>; Tel.: +374 99 993349

### Content

- Nanostructure production, based on Ba<sub>x</sub>Sr<sub>1-X</sub>TiO<sub>3</sub> ferroelectrics.
- Dielectric characteristics of nanofilm *Pt/Ba<sub>x</sub>Sr<sub>1-x</sub>TiO<sub>3</sub>/Pt* structure under electron beam irradiation

# The technology of ferroelectric nanostructure production



### **Experimental SHS reactor**

1. Quartz tube; 2. low noise amplifier; 3. end product; 4. analog-digital convector; 5. green mixture; 6. thermocouples; 7. PC; 8. oxygen flow controller; 9. oxygen; 10. quartz mesh; 11. heater; 12. thermoresistant boat; 13. combustion front; 14. wolfram ignitor;15. ignition block.

### $xBaO_2 + (1-k)TiO_2 + kTi + (1-x)SrCO_3 + O2 \rightarrow Ba_xSr_{1-x}TiO_3$



SHS technological types are characterized by the following features:

- low energy consumption (in most cases it is only necessary for initiating an SHS process);
- simple technological equipment, its high productive capacity and ecological;
- decreased number of technological stages in comparison with conventional technologies;
- feasibility of production lines adaptable to production of different materials and items and amenable to mechanization and automation;

### Temperature distribution along combustion 6 front propagation

I-green mixture; II-warming-up zone; III-metal oxidation zone; IV-active oxidation of metal and formation of the intermediated; V-zone of secondary chemical interactions between intermediates and formation of final product; VI-cooling-down zone.



Combustion temperature ( $T_c$ ) and velocity ( $U_c$ ) vs. amount of combustible (Ti) in the initial mixture for  $Ba_{0.25}Sr_{0.75}TiO_3$ 



### XRD patterns of Ba<sub>0.25</sub>Sr<sub>0.75</sub>TiO<sub>3</sub> powder



## Linear shrinkage factor of ceramic samples vs. sintering temperature



### SEM image of Ba<sub>0.25</sub>Sr<sub>0.75</sub>TiO<sub>3</sub>



### PLD of $Ba_{0.25}Sr_{0.75}TiO_3$ on a silicon substrate (p-<sup>11</sup> Si, $\rho$ = 1000 Ωcm)



- Oxygen flow 30 mL/min, pressure 2x10<sup>-3</sup> mbar;
- KrF-excimer laser (Lambda LPX305) with a pulse width of 20ns ;
- Pulse energy of approximately 1J per pulse;
- Energy density of 2.5Jcm<sup>-2</sup>;
- Repetition rate of 10Hz;
- Deposition time of 100s.

### **PLD** Condition

#### PLD Experiment 8038

Epi-Ba25Sr75TiO3 auf recl STO

Durchgeführt am: 07.07.2008 11:59:30 von Jürgen Schubert Dauer des Experiments: 01:22:12 Basisdaten aus Experiment Nr. 8037

Substrat: \SrTiO3\SrTiO3(100) repolished 0.85mm (Dicke 0,85 mm Emissionsgrad 0,930)

Belüftungsverzögerung: 15 Sekunden Belüftungszeit: 30 Sekunden

Anzahl der Schichten und Temperschritte: 1

#### Herstellungsschritt 1: Ablation

Material: Ba25Sr75TiO3 (Fokus X = 4,00, Fokus Y = 5,00, Blende L = 3,50, Blende R = 3,50, Position = 56,50) Laser: 100 Sekunden @ 10 Hz (constant high voltage mode, HV = 21,0 kV) Heizen: 5,00 A für 12 min Substratposition: x = 5,000 mm, y = 107,500 mm, Winke1 =  $36,0^{\circ}$ Sauerstoff-Fhuß: 30,00 ml/min Druckbereich: niedrig (während der Schichtherstellung mit Turbopumpe abpumpen) Basisdruck: Vor Beginn dieser Schicht Kammer auf 8,00E-4 mbar evakuieren.

### Cross-sectional SEM image showing the Si-SiO2-Ti-Pt-BST layer stack



### XRD patterns of $Ba_{0.25}Sr_{0.75}TiO_3$ nano-layer

#### Exp8038 BST auf STO (d=3,948Å)



### Photograph of a fabricated nano-layer structure chip - (b) and sizes of IDE geometry - (a)

15





b)

### AREAL machine parameters for Electron Beam Irradiation

| <u>RF System</u>                       |         |                                       |                         |
|----------------------------------------|---------|---------------------------------------|-------------------------|
| RF High Voltage                        | [ kV ]  | 132                                   |                         |
| RF High Voltage (Peak Power)           | [dBm]   | -4.02                                 | Power meter on Gun      |
| RF Phase                               | [deg]   | -38                                   |                         |
| Pulse Repetition Rate                  | [Hz]    | 12                                    |                         |
| Magnets                                |         |                                       |                         |
| Solenoid Current                       | [A/V]   | 9.6/45                                |                         |
| Dipole Current                         | [A/V]   | 4.2/9                                 |                         |
| Corrector Magnet (X   Y)               | [A/V]   | 2.91/8                                |                         |
| Beam Parameters                        |         |                                       |                         |
| Beam Charge ( FC-IN / FC-OUT )         | [ pC ]  | 255/53                                | 30 (absorbed by sample) |
| Beam Energy spectrometer               | [ MeV ] | 3.7                                   |                         |
| Laser System                           |         |                                       |                         |
| Laser pulse duration                   | [ ps ]  | 0.5                                   |                         |
| Time                                   |         | 1 hour                                |                         |
| Beam Profile @ YAG 1 (straight screen) |         | Beam profile @ spectrometer E=3.7 MeV |                         |





### The C–f dependences of the examined structure 17

Before-blue line; after the first irradiation-red;

after the second irradiation-green; after the third irradiation-purple.



### The calculation of $\varepsilon_f$ of the examined structures $\Box$

Equivalent circuits of the examined structures



The total (measured) capacitance of the structure:

 $C_{t_ot} = (n-1)l \cdot C_1$  *n* is the amount of fingers, *l* is the length of the fingers.  $C_1 = \frac{\varepsilon_o \varepsilon_f}{2} \cdot \frac{K[(1-k^2)^{1/2}]}{K(k)} = \frac{\varepsilon_o \varepsilon_f K(k^1)}{2 \cdot K(k)},$ 

K(k) is the complete elliptic integral of the finst kind with modules of k.

$$k = \cos\left(\frac{\pi}{2} \cdot \frac{w}{w+S}\right).$$

The capacitance of the equivalent circuit of structure:

$$C_{t_ot} = C_s + C_\beta + C_f + C_{exp} + C_i$$
,

where  $C_s$  is the capacitance of the substrate $(pS_i)$ ,  $C_\beta$  is the parasitic capacitance between  $P_t$  electrodes (fingers),  $C_f$  is the capacitance of ferroelectric film,  $C_{exp}$  is the capacitance of the measurement set-up,  $C_i$  is the insulator lager (SiO<sub>2</sub>) capacitance. The numerical calculations of  $C_i$ ,  $C_\beta$  is shows, that its value about two order less than that the  $C_f$  and ignoring also the  $C_s$ ,  $C_\beta$  and  $C_{exp}$ , we used the approximation of:

$$\varepsilon_f \cong \frac{2C_{t_0t}}{\varepsilon_0 \cdot l \cdot (n-1)} \cdot \frac{K(k)}{K(k^1)}$$

## The $\mathcal{E}_{f}$ – f dependences of the examined structures 19

Before-blue line; after the first irradiation-red; after the second irradiation-green; after the third irradiation-purple.



## The tan $\delta$ -f dependences of the examined 20 structures

Before-blue line; after the first irradiation-red; after the second irradiation-green; after the third irradiation-purple.



## **Thank You**