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• Nanostructure production, based on BaxSr1-XTiO3 
ferroelectrics. 

 
• Dielectric characteristics of nanofilm Pt/BaxSr1-xTiO3/Pt  

structure under electron beam irradiation   
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The technology of ferroelectric nanostructure 
production 
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Initial  metal and 
nonmetal powders 

Drying Milling Mixing of powders 

Synthesis by SHS 

Milling 

Compacting 

Sintering 

Pulsed laser deposition 



1. Quartz  tube; 2. low noise amplifier; 3. end product; 4. analog-digital convector; 5. 
green mixture; 6. thermocouples; 7. PC; 8. oxygen flow controller; 9. oxygen; 10. 
quartz mesh; 11. heater;  12. thermoresistant  boat; 13. combustion front; 14. wolfram 
ignitor;15. ignition block.   

4 Experimental SHS reactor 

xBaO2 + (1-k)TiO2 + kTi +(1-x)SrCO3 +O2→ BaxSr1-xTiO3 



SHS technological types are characterized 
by the following features: 
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• low energy consumption (in most cases it is only necessary for initiating 

an SHS process); 

• simple technological equipment, its high productive capacity and 

ecological; 

• decreased number of technological stages in comparison with 

conventional technologies; 

• feasibility of production lines adaptable to production of different 

materials and items and amenable to mechanization and automation; 



Temperature distribution along combustion 
front propagation 
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I-green mixture; II-warming-up zone; III-metal oxidation zone; IV-active oxidation of metal and 
formation of the intermediated; V-zone of secondary chemical interactions between 
intermediates and formation of final product; VI-cooling-down zone. 

The process of wave propagation is characterized by:  
•Front propagation (burning) velocity  (0.1–0,4 cm/s). 
•Maximum combustion temperature  (1300–2000 K). 
•Heating rate in the combustion front (103–106 K/s).  
•Extent of phase/structure transformation. 
•Stability limit (steady or unsteady wave propagation) . 
•Pulsation frequency, hot spot velocity, etc. (in case of 
unsteady combustion). 
•Extinction limit (no combustion even upon intense 
initiation).  



Combustion temperature (Tc) and velocity (Uc) vs. amount of 
combustible (Ti) in the initial mixture for Ba0.25Sr0.75TiO3 
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XRD patterns of Ba0.25Sr0.75TiO3 powder 
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1. Ba0,25Sr0,75TiO3 
2. TiO2 
3. BaO 
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 Linear shrinkage factor of ceramic samples vs. 
sintering temperature 
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SEM image of Ba0.25Sr0.75TiO3  
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PLD of Ba0.25Sr0.75TiO3 on a silicon substrate (p-
Si, ρ = 1000 Ωcm)  
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• Oxygen flow 30 mL/min, pressure  

      2x10-3 mbar; 

• KrF-excimer laser (Lambda LPX305) with a 

pulse width of 20ns ; 

• Pulse energy of approximately 1J per pulse; 

• Energy density of 2.5Jcm-2 ; 

• Repetition rate of 10Hz; 

• Deposition time of 100s. 



PLD Condition 
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Cross-sectional SEM image showing the  
Si-SiO2-Ti-Pt-BST layer stack 
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XRD patterns of Ba0.25Sr0.75TiO3 nano-layer  
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Photograph of a fabricated nano-layer structure  
chip - (b) and sizes of IDE geometry - (a) 
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a) 

b) 



AREAL machine parameters for Electron Beam 
Irradiation 16 

RF System       

RF High Voltage [ kV ] 132   

RF High Voltage (Peak Power) [ dBm] -4.02 Power meter on Gun 

RF Phase [deg] -38   

Pulse Repetition Rate [Hz] 12   

Magnets       

Solenoid Current [ A / V ] 9.6/45   

Dipole Current [ A / V ] 4.2/9 
Corrector Magnet  ( X  |  Y ) [ A / V ] 2.91/8 

Beam Parameters       

Beam Charge ( FC-IN / FC-OUT ) [ pC ] 255/53 30  (absorbed by sample) 

Beam Energy  spectrometer [ MeV ] 3.7   

Laser System       

Laser pulse duration [ ps ] 0.5   

Time 1 hour 

Beam Profile @ YAG 1 (straight screen) Beam profile @ spectrometer E=3.7 MeV 



The C–f dependences of the examined structure  17 
Before-blue line; after the first irradiation-red;  
after the second irradiation-green; after the third irradiation-purple. 



Equivalent circuits of the examined structures  

18 The calculation of 𝜀𝜀𝑓𝑓 of the examined structures  

The total (measured) capacitance of the structure: 
        𝐶𝐶𝑡𝑡𝑜𝑜𝑡𝑡 = 𝑛𝑛−1 𝑙𝑙∙𝐶𝐶1  
𝑛𝑛 is the amount of fingers,  𝑙𝑙 is the length of the fingers. 

𝐶𝐶1 =  
𝜀𝜀𝑜𝑜𝜀𝜀𝑓𝑓

2 ∙
𝐾𝐾[(1 − 𝑘𝑘2)1 2� ]

𝐾𝐾(𝑘𝑘) =  
𝜀𝜀𝑜𝑜𝜀𝜀𝑓𝑓𝐾𝐾(𝑘𝑘1)

2 ∙ 𝐾𝐾(𝑘𝑘)  , 

𝐾𝐾 𝑘𝑘 is the complete elliptic integral of the fins t kind with 
modules of 𝑘𝑘.  

𝑘𝑘 =  cos
𝜋𝜋
2 ∙

𝑤𝑤
𝑤𝑤 + 𝑆𝑆 . 

The capacitance of the equivalent circuit of structure:  
𝐶𝐶𝑡𝑡𝑜𝑜𝑡𝑡 =𝐶𝐶𝑠𝑠 + 𝐶𝐶𝛽𝛽 + 𝐶𝐶𝑓𝑓 + 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐶𝐶𝑖𝑖 , 
 where 𝐶𝐶𝑠𝑠 is the capacitance of the substrate(𝑝𝑝𝑆𝑆𝑖𝑖), 𝐶𝐶𝛽𝛽 is the parasitic capacitance between 

𝑃𝑃𝑡𝑡 electrodes (fingers), 𝐶𝐶𝑓𝑓 is the capacitance of ferroelectric film, 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒 is the capacitance of 
the measurement set-up, 𝐶𝐶𝑖𝑖  is the insulator lager (SiO2) capacitance. The  numerical  
calculations of 𝐶𝐶𝑖𝑖 ,𝐶𝐶𝛽𝛽 is shows, that its value about two order less than that the 𝐶𝐶𝑓𝑓 and 
ignoring also the 𝐶𝐶𝑠𝑠 ,𝐶𝐶𝛽𝛽 and 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒, we used the approximation of: 

 𝜀𝜀𝑓𝑓 ≅
2𝐶𝐶𝑡𝑡𝑜𝑜𝑡𝑡

𝜀𝜀𝑜𝑜∙𝑙𝑙∙(𝑛𝑛−1)
∙ 𝐾𝐾(𝑘𝑘)
𝐾𝐾(𝑘𝑘1)
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The Ɛf –f dependences of the examined structures 
Before-blue line; after the first irradiation-red;  
after the second irradiation-green; after the 
third  irradiation-purple. 
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The tanδ–f dependences of the examined 
structures 
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Before-blue line; after the first irradiation-red;  
after the second irradiation-green; after the third  irradiation-purple. 



Thank You 
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