FLUKA Usage in Radiation Field Study at AREAL"

Z.G. AMIRKHANYAN, V.H. PETROSYAN, V.G. KHACHATRYAN

Introduction

- > Beam and dose measurements.
- Using SimpleGEO for modeling the geometry of AREAL building.
- The usage of Monte Carlo code FLUKA to model the radiation fields.

FLUKA simulation results:

- The distribution of electron beam energy for different areas, depending on the energy spread of the electrons;
- The equivalent dose distribution in the building, depending on the energy spread of the electrons.

> SimpleGeo was applied to show:

- The equivalent dose 2D distribution in the tunnel , control-room, laser room and RF hall;
- A profile of the dose distribution, depending on the changes in the electrons initial energy spread.

Technical Specification OD-01

Display ranges

- > Dose rate: $0 \cdots 2000 \, \mu SV/h$
- > Dose: $0 \cdots 2000 \frac{\mu SV}{h}$
- > Energy ranges:
 - Photon radiation: 6 keV to 15 MeV
 - Beta-radiation: 60 keV to 3 MeV
- > Radiation probe: Air opened ionization chamber
 - Volume: 600 cm³
 - Preferred beam direction; point of reference: axial, marked on detector

Measurement uncertainties:

- ▹ Fine measurement range 20: < 15%</p>
- > Fine measurement ranges 200 and 2000: < 5%

Beam Parameters

- The most challenging part was the implementation of the real buildings and machine geometry using FLUKA's combinatorial geometry.
- It is not always possible to model all the details of the actual geometry using only simple shapes.

The Model of AREAL halls (SimpleGeo)

The Model of machine hall (SimpleGeo)

FLUKA Simulation

Energy spread	Beam: Energy v s v Δp(FWHM): 2e-07 s v x(FWHM): 0.015	E: 0.0037 ∆¢: Gauss ▼ Shape(Y): Gauss ▼	Part: ELECTRON ▼ y(FWHM): 0.015
Ap: Gaus Shape(X): Gaus	Beam: Energy ▼ S ▼ Ap(FWHM): 0.0011 x(FWHM): 0.015	E: 0.0037 Δφ: Gauss ▼ Shape(Y): Gauss ▼	Part: ELECTRON ▼
Ap: Gaus Shape(X): Gaus	Beam: Energy ▼ s ▼ Δp(FWHM): 0.0017 s ▼ x(FWHM): 0.015	E: 0.0037 Δφ: Gauss ▼ Shape(Y): Gauss ▼	Part: ELECTRON ▼ Δφ: 0.5 y(FWHM): 0.015
Δp: Gaus Shape(X): Gaus	Beam: Energy ▼ s ▼ Δp(FWHM): 0.00235 s ▼ x(FWHM): 0.015	E: 0.0037 ΔΦ: Gauss ▼ Shape(Y): Gauss ▼	Part: ELECTRON ▼ ΔΦ: 0.5 y(FWHM): 0.015
Ap: Gaus Shape(X): Gaus	Beam: Energy v s v Δp(FWHM): 0.00352 s v x(FWHM): 0.015	E: 0.0037 Δφ: Gauss ▼ Shape(Y): Gauss ▼	Part: ELECTRON ▼ Δφ: 0.5 y(FWHM): 0.015
Ap: Gaus Shape(X): Gaus	Beam: Energy ▼ s ▼ Δp(FWHM): 0.0047 s ▼ x(FWHM): 0.015	E: 0.0037 Δφ: Gauss ▼ Shape(Y): Gauss ▼	Part: ELECTRON ▼ ΔΦ: 0.5 y(FWHM): 0.015

Electron Beam Initial Parameters

The percentage of electrons reaching the vacuum window (blue) and FC (red).

FLUKA Results for Bent Beam

Simulation values of the integral dose within the dosimeter volume for different positions and energy spreads in the machine hall.

Measured and simulated integral dose values for a certain position in the machine hall

Simulation values of the integral dose within dosimeter volume for different positions and energy spreads in the machine hall.

FLUKA Results for Direct Beam

Measured and simulated integral dose values for a certain position in the machine hall

- To measure the integral dose in Laser and RF rooms by dosimeter usage.
- To improve simulation results using FLUKA custom routines.
- Using FLUKA code for modeling AREAL radiation field at 20 MeV.

Thank You for Attention !