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Introduction 

The investigation of new accelerating structures and high frequency, high brightness 

coherent radiation sources is an important research area in modern accelerator physics [1-

7]. High brightness and high intensity radiation in     region opens new opportunities for 

researches in a wide range of areas [8-14]. European XFEL, SwissFEL accelerators are 

constructed to obtain this kind of radiation [15, 16]. To emit the     radiation, one needs to 

generate ultrashort, intensive bunches [16-25]. When lengths of microbunches become 

smaller than the synchronous mode wavelength (    ), a large number of electrons 

starts to radiate coherently and the intensity of the radiation field grows quadratically with 

the number of particles [26-28]. 

The direct generation of sub-ps bunches in RF guns is limited because of technical 

characteristics of photocathodes and lasers. Because of that reason, sub-ps bunches are 

usually formed by shortening the initial long bunches [29-31]. One of the main principles to 

obtain ultrashort bunches is to use SASE process [32, 33], which is widely used in modern 

accelerators (FELs) [15, 16]. Also it is possible to use additional external laser field to have 

a stronger microbunching [34-36]. The main principle of generating ultrashort bunches is to 

obtain energy modulation within the bunch and convert it into charge density modulation 

[22, 31, 37-39]. For the high energy bunches magnetic chicanes and for low energy ones 

velocity bunching is used to generate sub-ps bunches [40-45]. Energy modulation within 

the bunch can be obtained via bunch interaction with its own radiated wakefield or by the 

field emitted from bunches in front of it. For such a process disc loaded or dielectric loaded 

structures are widely used [46-51]. Both structure types are characterized by the high 

order modes, excited during the beam passage through them [51-62]. These high order 

modes play a parasitic role in particle acceleration processes. 

Unlike disc and dielectric loaded structures, in the single mode structures like 

plasma and circular waveguide with two-layer metallic walls (ICMT – internally coated 

metallic tube) there are no parasitic high order modes [63-67]. In the dissertation the 

microbunching processes are studied in single mode structure. 
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It is theoretically shown that ICMT has a single slowly propagating high frequency 

mode [66]. In case of structure appropriate geometry, a charged particle moving along the 

structure axis radiates in the terahertz frequency region. While the theoretical study of 

ICMT shows that for certain conditions it is a single-mode structure, the experiment on it is 

related to some technical difficulties. To serve as a high frequency single-mode structure, 

ICMT requires high accuracy,    – sub-   low conductivity internal coating, and an inner 

diameter in the order of several    [66], which is technically a complex problem. Because 

of these problems, it is preferable to do an experiment on a structure which is similar to 

ICMT and is more simple in mechanical means. As such a multilayer flat metallic structure 

is considered. For appropriate parameters these two structures are similar, and it is 

expected that two-layer flat structure should be single-mode, high frequency too. 

The thesis consists of introduction, four chapters, summary and bibliography. 

In introduction a short review on the actuality of problems and the main results of the 

thesis are given. 

The first chapter of the dissertation is devoted to the study of slow waves in 

laminated structures. The study of high frequency accelerating structures is an important 

issue for the development of future compact accelerator concepts [68-70]. The laminated 

structures are widely used in advanced accelerators to meet the technical specifications 

like high vacuum performance, cure of static charge, reduction of the impedance, etc. [53]. 

The electrodynamic properties of two-layer structures, based on field matching technique, 

have been studied in Refs. [71–74]. For the internally coated metallic tube (ICMT), with 

coating thickness smaller than the skin depth, the longitudinal impedance has a narrow 

band resonance at high frequency [74], which is conditioned by the synchronous      

fundamental mode [75]. In the first chapter, the peculiarities of high frequency      mode, 

slowly propagating in ICMT structure, is analyzed both numerically and analytically. The 

TM modes dispersion curves and the     mode attenuation constant are given. 

Dispersion relations of flat two-layer structure are investigated. The longitudinal impedance 

and the radiation patterns for large aperture ICMT structures are discussed. 

The main results of the first chapter are 
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 The single slow propagating mode properties in laminated structures are 

studied. It is shown that two-layer cylindrical structure has single slowly traveling 

mode (    ) in     frequency range. 

 Explicit expression for attenuation constant of two-layer structure’s      mode 

is obtained. 

 Dispersion relations of flat two-layer structure are derived. 

The second chapter of the thesis is devoted to study of electrodynamic properties 

of multilayer two infinite metallic parallel plates. A bunch traveling through the structure 

excites wakefields [52-54, 76-79]. The longitudinal component of the wakefield produces 

extra voltage for the trailing particles in the bunch [80-83]. The Fourier transformation of 

wake potential for a point driving charge is the impedance of the structure, which presents 

the excited electromagnetic field in frequency domain [52, 53]. For ultrarelativistic particles, 

the impedance is independent of the beam parameters and can describe a structure in 

frequency domain. 

The field matching technique, based on matching the tangential components of the 

electromagnetic fields at the borders of layers, is used to calculate electromagnetic fields. 

Matrix formalism is developed to couple electromagnetic field tangential components in 

two borders of layers. Fourier transformed electromagnetic fields, excited by a relativistic 

point charge, are obtained analytically for two-layer unbounded two parallel infinite plates. 

As a special case, electromagnetic fields of single-layer unbounded and two-layer 

structures with perfectly conducting outer layers are obtained. The longitudinal impedance 

of two-layer structure with outer perfectly conducting layer, excited by an ultrarelativistic 

particle, is calculated numerically. It is shown that for low conductivity inner layer the 

driving particle radiation has a narrow-band resonance. The resonance frequency is well 

described by the formula      
 

  
√

 

   
, where   is the half-height of the structure,   is the 

layer thickness and   is the velocity of light in vacuum. The longitudinal wake potential is 

calculated, and it is shown that it is a quasi-periodic function with the period    given by 

the resonant frequency    
 

    
. 
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The main results of the second chapter are: 

 A method of calculating point charge excited electromagnetic fields in multilayer 

infinite parallel plates is developed. 

 Expressions of radiation fields in two-layer parallel plates are analytically derived. 

 Longitudinal impedance and dispersion relations of symmetrical two-layer 

parallel plates with perfectly conducting outer layer are derived. 

 A comparison of the electro-dynamic properties of two-layer parallel plates and 

of ICMT is performed. 

 Conditions in which the point charge radiation in two-layer parallel plates has a 

narrow-band resonance are obtained. 

 Wakefields generated by a point charge traveling through the center of the two-

layer parallel plates, with outer perfectly conducting material, are calculated. 

In the third chapter a theoretical study of rectangular cavity with laminated walls 

and comparison with the experimental results are presented. In the second chapter it is 

shown that for appropriate parameters two-layer parallel infinite plates have a distinct, 

narrow band resonance. In this chapter, a real, limited structure, which is similar to the 

parallel plates, is studied. As such a structure, a rectangular cavity with laminated 

horizontal walls is considered. For the cavity, with vertical dimensions much bigger than 

horizontals ones, the electrodynamic characteristics are expected to be similar to the ones 

for parallel plates. In the case of a resonator, unlike the parallel plates, one has a discrete 

set of eigenfrequencies in all three degrees of freedom. To be able to distinguish the main 

resonance from the secondary ones, a finite wall resonator model (perfectly conducting 

rectangular cavity with inner low conductivity layers at the top and bottom walls) is 

developed and resonances of the model are studied. 

A comparison of resonant frequencies of a resonator model with resonances of the 

test copper cavity, with inner germanium layers and parallel two-layer plates, is done. A 

good agreement between these results is obtained (           ⁄ ). The experimental 

results show the presence of fundamental resonance which is caused by the two-layer 

horizontal cavity walls. The measured fundamental frequencies are close to those 
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calculated for the two-layer parallel plates, their values are subjected to the laws specific to 

this kind of structures: they are decreasing with cavity height increase. 

The main results of the third chapter are: 

 The resonance properties of a copper rectangular resonator and a copper 

resonator with an internal germanium coating are experimentally investigated 

and theoretically substantiated. 

 A theoretical model of a rectangular cavity with horizontal laminated walls is 

created and electro-dynamical properties of it are studied. 

 A good correlation between resonance frequencies of the model and test facility 

is fixed: all resonances of the test structure correspond to the modes of the 

model. 

 It is shown that for a resonator, with vertical dimensions much bigger than 

horizontal ones, the resonance frequencies are in a good agreement with 

resonances of two-layer infinite parallel plates. 

The forth chapter of the dissertation is devoted to the generation of sub-ps bunches 

via bunch compression and microbunching processes in single-mode structures. 

Wakefields, generated by an electron bunch propagating through a structure, act back on 

the bunch particles or on the ones traveling behind it, producing energy modulation or 

transverse kick [52-54, 84-86]. In case of appropriate parameters, this process can lead to 

energy modulation within the bunch, which then can be transformed into a charge density 

modulation. For non-ultrarelativistic (      ) electron bunches, the energy modulation 

causes velocity modulation, which leads to bunch compression or microbunching at proper 

ballistic distances. 

 Single-mode structures, due to the absence of high order parasitic modes, are 

ideal candidates for this process. The plasma channel and internally coated metallic tube 

are observed as an example of single-mode structures. The method of ballistic bunching is 

used: the bunch is considered rigid in a structure and only energy modulations occur, then 

in the drift space the energy modulation leads to charge redistribution. 

The main results of the forth chapter are: 
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 It is shown that the Gaussian distributed bunch interaction with a single-mode 

structure leads to its compression. For appropriate bunch and structure 

parameters a bunch compression for 8 and 12 times for plasma and ICMT is 

reached, respectively. 

 It is shown that the microbunching of non-Gaussian bunches is possible in 

single-mode structures. For parabolic distributed bunches       and      

microbunches and for rectangular distributed bunches       and      

microbunches can be formed for plasma and ICMT, respectively. 

 The relations among the bunch length, structure parameters and microbunch 

formation distance are analyzed for various bunch shapes. The optimal 

parameters for structures and drift space distances are obtained. 

The main results of the dissertation are the following: 

 The single slowly propagating mode properties in laminated structures are 

studied. 

 The electromagnetic fields of multilayer parallel plates are analytically derived. 

 Dispersion relations of two-layer parallel plates are derived and single 

resonance frequency is obtained. 

 The narrow-band high frequency longitudinal impedance and longitudinal wake 

function of two-layer parallel plates are calculated. 

 Resonance frequencies of rectangular cavity with horizontal double-layer 

metallic walls are derived. 

 A good agreement between the theoretical results and experiment is fixed. 

 It is shown that the generation of ultrashort bunches (      ) in single-mode 

structures is possible via ballistic bunching. 

The study results have been reported at international conferences, during the 

seminars at CANDLE Synchrotron Research Institute, Yerevan State University, DESY, 

Paul Scherrer Institute and are published in scientific journals [75, 87-90].  
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Chapter 1: Slow waves in laminated structures 

1.1 Introduction 

In this chapter the conditions in which slowly propagating free oscillations are 

formed in cylindrical and flat two-layer metallic structures are studied. The importance of 

establishing the presence of such oscillations is due to the fact that the radiation of a 

moving particle in accelerating structures is synchronous (or is synphase) with its motion. 

In particular, for an ultrarelativistic particle moving at the speed of light, the phase velocity 

of the emitted wave is the same too. 

As is known, an arbitrary field, generated or propagating in a closed structure, can 

be expressed with the help of a superposition of the eigenoscillations of a given structure. 

The field generated by a particle must only contain synchronous components of its own 

oscillations. 

In this chapter, we consider mechanisms of the formation of a synchronous mode in 

two-layer cylindrical and planar structures and demonstrate their connection with 

longitudinal impedances. In particular, for a flat structure, a relationship between the 

eigenvalues of the synchronous mode and the poles of the impedance integral is 

established. 

1.2 Slow waves in cylindrical structures 

In this chapter a round metallic two-layer hollow pipe of inner radius   with a 

perfectly conducting outer layer and an inner metallic layer of conductivity   and thickness 

      (Figure 1.1) is considered. 
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Figure 1.1: The geometry of the internally coated metallic tube. 

In axially symmetric geometry, the non-zero electromagnetic field components (  , 

  ,   ) of the axially symmetric monopole TM modes are proportional to    (    
     ), 

where    
 √      

  and    are the longitudinal and radial propagation constants, 

respectively,    
 ⁄  is the wave number,   is the frequency and   is the velocity of light. 

The dispersion relation for the modes is derived by the matching of electromagnetic field 

tangential components (  ,   ) at the boundaries of layers. Omitting the factor    (    
  

   ), the tangential components of electromagnetic fields in vacuum (   ) and metallic 

wall (     ) regions are given as: 

  (   )     (   
 )

  (   )   
    

   

  (   
 )

  (   )     (   
 )     

( )(   
 )

  (   )  
    

   

[   (   
 )     

( )(   
 )]

  for  

   

     

 (1.1) 

where    
 √   

    ,    √ 
 

⁄  is the radial propagation constant in internal metallic 

layer,    (
   

  ⁄ ) is the skin depth,    and       
  

 ⁄  are the vacuum and metal 

dielectric constants, respectively,     ( ),     
( )( ) are the zero and first order Bessel and 

Hankel functions, respectively. 
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The unknown coefficients       are defined by the matching of tangential 

components (  ,   ) at (   ) and the vanishing of the electric field    at the perfect 

conducting outer wall (   ). The non-zero solution is provided by zero determinant of a 

system of three linear algebraic equations. This defines the eigenvalue equation: 

    (    )

    (    )
 

     (    )  
( )

(    )   (    )  
( )

(    )

     (    )  
( )

(    )   (    )  
( )

(    )
   (1.2) 

In a high frequency range, where the inequalities | |  |   
|  ( |   

|  √ 
 

⁄ ), 

|   
|    and     are hold, Eq. 1.2 is modified to 

    (    )

     (    )
 

  

   

   (   
 )    (1.3) 

For the inner metallic layer thickness  , less than the skin depth   (   ), and for 

not very high frequencies    
  ⁄  (   

  
 ⁄ ), the Eq. 1.3 is expressed as 

 

    

  (    )

  (    )
 

 

    
     (1.4) 

In the frequency range of interest (THz), the inequality    
  ⁄  holds well for 

practically all metals (for copper,    ⁄        ). The frequency range of applicability for 

expression (1.4) is given as      . 

The analysis of Eq. 1.4 shows that the radial propagation constants    
 of high 

     (   ) modes are purely real and non-zero. Therefore, the phase velocity for high 

order modes       
   

⁄  is higher than the velocity of light. For fundamental      mode, 

the parameter     vanishes (     ) at    √     (     ) frequency,     is purely 

real for      (     ) and     is purely imaginary for      (     ). Thus, the 

structure under consideration is characterized by a single slowly propagating     mode at 

high frequency. Figure 1.2 shows the dispersion curves for the fundamental      and high 
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order      (    ) modes. As is seen, only the fundamental mode crosses the 

synchronous line     (     ) at a resonant frequency of      √    . 

 

Figure 1.2: Dispersion curves for fundamental      and high order      (   ) modes. 

1.3 Attenuation parameter 

To evaluate the      mode attenuation constant       (   ) for thin inner layer 

(   ), the second term in expansion of formula 1.3 should be taken into account, i.e. 

   ( )   
 ⁄  

 
 ⁄ , 

  (    )

      (    )
 

  
 

   
  

 

  
      (1.5) 

where   (     ) √ ,        √ . The numerical solutions for real and imaginary 

parts of      mode transverse propagation constant are presented in Figure 1.3 (  ⁄  

    ,    ). For small arguments of Bessel functions |   |    one can obtain the 

following approximate expression: 

   
  

  

  ( 
 

 
 

  
 

   
  

 

  
)     (1.6) 

Note, that the real and imaginary parts of transverse propagation constant     at 

the resonance frequency      √     are given as: 

  (   )     (   )  
 

 
√

  

   
     (1.7) 
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and the relation |   |    holds well around the resonance frequency. For high 

frequency   |   |, the longitudinal propagation constant     √      
  is given as: 

    
 

    ( 
    

 )   
  

 (  ) 
    (1.8) 

The attenuation constant at resonance frequency (    ) is then given as     

      . 

 

Figure 1.3: Real (solid) and imaginary (dashed) parts of      mode transverse eigenvalue 

      .  

1.4 Longitudinal impedance and radiation pattern 

A relativistic charge traveling along the axis of a round metallic two-layer hollow 

pipe (Fig. 1.1) is considered. The excited non-zero electromagnetic field components (  , 

  ,   ) of the axially symmetric monopole mode in the vacuum region can be derived 

based on the field matching technique [72]. A good analytical approximation for metallic 

type two-layer tube longitudinal impedance can be obtained in high frequency range, when 

the skin depths   are much smaller than the tube radius a, i.e.     [74]. 

  
   

  

    (  
 

 

 

   
   (  ))

  

    (1.9) 
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where           is the impedance of free space. For the layer thickness   smaller with 

respect to the skin depth   (   ) and for not very high frequencies (      ), the 

impedance can be presented in a form of parallel resonance circuit impedance: 

  
   [    (

  

 
 

 

  
)]

  
    (1.10) 

where     √     is the resonant frequency,     (    )
   is the shunt impedance, 

     (   )
   is the quality factor. 

 

Figure 1.4: Longitudinal impedance for Cu, LCM (solid) and Cu-LCM (dashed) tubes. 

Figure 1.4 presents the field matching based exact numerical simulations of 

longitudinal impedance for copper (Cu,                  ) tube, internally coated by 

the low conductivity metal (LCM,                ) of        and           

thickness. The tube radius is       . As is seen, in the transition region for thin LCM 

layer the impedance is modified to narrow band resonance at the frequency         , 

corresponding to              for        and             for          . The 

impedance has a different nature for single and two-layer tubes. It has a broadband 

maximum for the single layer tube and narrow band resonance at high frequency ω for 

two-layer tube. An important feature is that the resonance is observed when the inner layer 

thickness is less than the layer skin depth. Thus, the resonance is conditioned by the 

interference of scattered electromagnetic fields from the inner and outer layers. 
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The radiation pattern at the open end of the waveguide can be evaluated by using 

the “from near to far fields” transformation technique. 

 

Figure 1.5: Radiation pattern for frequencies            (solid) and           (dashed). 

Fig. 1.5 presents the angular distribution of the normalized radiation intensity with 

respect to waveguide axis     for the internal layer thickness of           and 

resonant frequencies           (      ) and            (      ). The radiation 

pattern is zero at     and reaches its maximum value at         (   √    ).  

1.5 Slow waves in flat structures 

In this section, we derive the dispersion relations that determine the 

eigenfrequencies of electromagnetic oscillations of two infinite parallel planes, the latter 

being covered by a thin conducting layer from inside. The metal layers are identical: with a 

thickness   and a conductivity  . The permittivity of the layers is characterized by the 

expression         ⁄ , where    is the static permittivity of the metal (for most metals 

     , where    is the permittivity of vacuum, for germanium        ) and   is the 

frequency. The distance between the inner surfaces of the plates is   . 

The solution for the natural electromagnetic oscillations (eigenoscillations) of the 

structure is sought by the method of partial regions. In the case under consideration, we 

can distinguish three regions: the regions of the upper (           ) and lower 

(             ) metal layers and the vacuum region between the plates (   
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       ). In the outer ideally conducting layers, the fields and currents are absent. 

Since all three regions have finite dimensions along the transverse direction, in each of 

them quasi-plane waves with both damped and increasing amplitudes can propagate. 

Thus, in each of the three regions, the fields can be written in an identical form. In 

particular, electrical components in each of the three regions (      ) are written as: 

      
( )

         
( )

         
( )

     (1.11) 

with 

          
( ) ( ⃗)  ∫ ∫  ̃         

( )
        

 

  

 

  
   (1.12) 

where 

 ̃     
( )

       {
  (  

( )
 )

  (  
( )

 )
}   (          )

 ̃     
( )

       {
  (  

( )
 )

  (  
( )

 )
}   (          )

 ̃     
( )

       {
  (  

( )
 )

  (  
( )

 )
}   (          )

    (1.13) 

Here            are arbitrary weight coefficients (amplitudes) and     . The 

magnetic field components are determined from electrical field components with the help 

of Maxwell equations: 

 ⃗⃗   
( )( ⃗)  

 

  
     ⃗⃗ 

( )( ⃗)     (1.14) 

whence 
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 ̃     
( )  

 

  
(  

( )      
( )           

( ) ) {
  (  

( ) )

  (  
( ) )

}   (          )

 ̃     
( )   

 

 
(        

( )          
( ) ) {

  (  
( ) )

  (  
( ) )

}   (          )

 ̃     
( )

  
 

  
(  

( )
      

( )
          

( ) ) {
  (  

( )
 )

  (  
( ) )

}   (          )

 (1.15) 

The relationship between the amplitudes       
( )

 and       
( )        

( )
 is determined from 

the Maxwell equation: 

    ⃗⃗   
( )

        (1.16) 

whence 

      
( )

 
 

  
(   

( )
      

( )
         

( )
)    (1.17) 

To determine the relationship between wave numbers and frequency we use the 

identity, which follows from Eq. 1.13: 

        ⃗⃗   
( )

 (  
  (  

( )
)
 
   

 )  ⃗⃗   
( )(         ⃗)  (1.18) 

and the equation, which is a consequence of Maxwell's equations: 

        ⃗⃗ 
( )

     
   

  ⃗⃗ 
( )

     (1.19) 

with   
    

  relative electric and magnetic permeability in the respective regions (   
    

          
   ⁄     

     
   ),  and     ⁄ . 

Comparing Eq. 1.18 and Eq. 1.19, we obtain 

  
( )

 √     
   

    
    

        (1.20) 

For inner (vacuum) part of structure 

   
( )

 √      
    

       (1.21) 
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To construct the dispersion relations (relationship between    and  ) one should set 

up a system of linear equations based on field matching at the boundaries of the structure 

areas: 

1.   
( )

              
( )

   at       

(1.22) 

2.   
( )    

( )      
( )    

( )       
( )    

( )   
( )    

( )
 at     

3.   
(  )    

( )   
(  )    

( )    
(  )    

( )   
(  )    

( )
 at      

4.   
(  )

           
(  )

   at        

As a result, a system of 12 equations containing 12 unknown amplitudes is obtained. 

Dispersion relations are determined by the determinant of this system being equal to zero. 

These relations take a form consisting of a product of four factors: 

  ∏   
 
          (1.23) 

where 

     
( )  (   

( ))  (   
( ))    

( )  (   
( ))  (   

( ))

     
( )  (   

( ))  (   
( ))    

( )  (   
( ))  (   

( ))

     
( )

(  
( ) 

   
    

 )  (   
( )

)   (   
( )

)    
( )

(  
( ) 

   
    

 )   (   
( )

)  (   
( )

)

     
( ) (  

( )    
    

 )  (   
( ))  (   

( ))    
( ) (  

( )    
    

 )  (   
( ))   (   

( ))

(1.24) 

Taking into account   
( )  √     

   
    

    
  from Eq. 1.18, instead of    and    , 

we can write 

      
( )

    
   

   (   
( ))  (   

( ))    
( )

    (   
( ))  (   

( ))

      
( )    

   
   (   

( ))  (   
( ))    

( )    (   
( ))  (   

( ))
  (1.25) 

An independent system of natural oscillations of the structure is determined by the 

factors (              ) being equal to zero. 

The radiation generated by a particle is synchronous with its motion. The spectral 

components of its radiation field have a phase velocity equal to the speed of light     

  ⁄   . In this case, the direction particle motion (direction along the z axis) is 
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distinguished. In the case of natural electromagnetic oscillations, determined in the 

absence of a particle or some other source of radiation, the directions along both 

horizontal axes  ⃗  and  ⃗  are equivalent. This fact manifests itself in a symmetrical 

dependence of the frequency     ⁄  on the wave numbers    and    (1.21): 

  √  
    

    
( ) 

     (1.26) 

The phase velocity of eigenfunctions of the structure has the following form: 

       ⁄  
 

  
  

√  
    

    
( ) 

  
      (1.27) 

As can be seen from Eq. 1.27, the phase velocity of the natural oscillations is equal 

to the velocity of the particle (the speed of light in a vacuum) under condition     . The 

amplitudes            are then written in a form containing the Dirac delta function:            

 ̃          (    ). Taking into account     , the vertical wave numbers   
( )

 will take the 

form   
( )  √  (    

   
 )    

    
  for      (in layers) and   

( )     at     (in the 

inner vacuum region). 

Thus, for synchronous eigenmodes, generated by a particle, instead of (1.24, 1.25), 

one can write (by replacing   
( )

 with   ): 

     
( )

  (   
( )

)   (   )      (   
( )

)   (   )

     
( )

  (   
( )

)  (   )      (   
( )

)   (   )

       
   

   
   (   

( )
)   (   )    

( )
    (   

( )
)   (   )

       
   

   
   (   

( )
)  (   )    

( )
    (   

( )
)   (   )

  (1.28) 

Let us compare the obtained expressions 1.28 with the denominators of the 

impedance (Eq. 2.45) obtained in chapter 2 writing them in a form convenient for 

comparison: 
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 (1.29) 

The comparison gives a complete coincidence of the expressions 1.28 and 1.29 

     
 ,      

 ,      
 ,      

     (1.30) 

Thus, the complex roots of the dispersion equations (              ) are the 

poles of impedance function on the complex plane   . When the particle moves along the 

symmetry plane of the structure (    )  only two dispersion equations are realized: 

     and     . With a parallel offset of the particle from the horizontal plane of 

symmetry (    ), all four dispersion equations are realized:               .  

In the approximation   
        or   

( )  √          (in the cylindrical case this 

approximation is equivalent to the one for the permittivity of the metal      ⁄ , which is 

valid for not very large frequencies), the expressions (1.28) or (1.29) become analytic on 

the complex plane   , which allows us to directly calculate the integral functions through 

which the impedance is expressed using the residue theorem [91]. 

The final form of the second and fourth equations (1.28) is: 

    (   )   √         ( √      )

  (   )

  
 

√      

  
   ( √      )

    (1.31) 

At a fixed frequency, the right-hand sides of Eq. 1.31 are constant (independent of 

the wave number    to be determined). Equations (1.31) can be expressed through 

dimensionless parameters  ̃       ̃    ,  ̃    ⁄  and       : 

   ( ̃ )

 ̃ 
   ̃

  (√    ̃)

√    ̃
     (1.32a) 

  ( ̃ )

 ̃ 
  ̃√    ̃    (√    ̃)  ̃ ⁄     (1.32b) 
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Fig.1.6: Eigenvalues of a planar two-layer structure. Solutions of equation 1.32a (left) and 1.32b 

(right) for different values of parameter   (           ) at a resonance frequency  ̃       ̃  

√  ⁄ ,  ̃      . 

 

  

Fig.1.7: Eigenvalues of a planar two-layer structure. Solutions of equation 1.32a (left) and 1.32b 

(right) in the case of     for several values of frequency:  ̃       ̃  √  ⁄  ,  ̃     √  ⁄  

     ̃ and  ̃     √  ⁄       ̃;  ̃      . 

Figures 1.6 and 1.7 show the eigenvalue distributions of the synchronous mode of a 

two-layer planar structure. On the horizontal and vertical axes, respectively, the imaginary 

and real components of the eigenvalues are plotted on the graphs. The graphs are a result 

of the exact solution of Equations (1.32a, b). For small right-hand sides of equations (1.32), 

their asymptotic solution can be represented as the sum of the solution for ideally 

conducting plates (         ⁄    (   )  for Equation (1.32a) and          for 

Equation (1.32b),          ) and a small additive   ( ), taking into account the presence 

of the inner coating:  



- 23 - 
 

   ( )       ( )    ( )      ( )    
  ( )   ( )

    ( )
   (1.33) 

where 

    ̃   (√    ̃) √    ̃⁄         ̃√    ̃    (√    ̃)  ̃ ⁄   (1.34) 

The smallness of parameters   ( )  (1.34) is conditioned not only by the small 

relative thickness of the layer  ̃, but also by the smallness of the other factors included in 

this parameter. Thus, for  ̃       and     at the resonant frequency  ̃  √  ⁄ , the 

parameter    is of the order of unity (⌊  ⌋   ). 

The eigenvalues     (solutions of the equation (1.32a)) within the parameters 

shown in Figures 1.6, 1.7 (left), are approximated quite well by the formula (1.33). They 

are characterized by imaginary components close enough to the eigenvalues of the 

structure consisting of two parallel ideally conducting planes (          ), and by small 

real additions, the values of which decrease along with the increase of   parameter 

(Fig.1.6, left). We note that for fixed values of the parameter  , small real corrections are 

linearly increasing along with the increase of imaginary components (Fig. 1.6, 1,7, left) on 

x axis and decreases with increasing frequency (Fig. 1,7, left). 

The behavior of    eigenvalue (solutions of equation (1.32b)) sequences is much 

more complicated. Their real components are two or three orders of magnitude smaller 

than the corresponding roots of equation (1.32a). For small   (    and     on Figure 

1.6, right) they exponentially decrease along with the increase of imaginary components, 

deposited on the horizontal axis. With an increase of the parameter  , the lower values 

begin to increase to a certain limit, and then the increase goes down (    on Figure 1.6, 

right). In contrast to the eigenvalues of    (solutions of equation (1.32a)), there is a 

general increase of the real components of eigenvalues along with the increase of   

parameter (Figure 1.6, right). The reverse order is also valid for fixed values of  : lower 

frequencies correspond to smaller values of the real components of the eigenvalues   . In 

contrast to the real values of   , they increase along with the frequency increase (Fig. 1.7, 

right). 
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The essential difference between the imaginary components of the eigenvalues    

and the corresponding values for ideally conducting parallel planes is explained by the 

magnitude of the parameter    (1.34): its smallness is ensured at very low relative 

thicknesses of the metallic layer  ̃ ( ̃   ) or at sufficiently high frequencies ( ̃   ̃   ). 

1.6 Summary 

The first chapter establishes the connection between the radiation of a charged 

particle and the synchronous electromagnetic eigenmodes of two-layer cylindrical and flat 

metal structures. 

For a two-layer metal cylindrical waveguide, it is shown, that a single slowly-

propagating (with phase velocity equal to the speed of light)      mode at certain 

frequency (resonant frequency   √    ⁄     inner radius of waveguide,   inner layer 

thickness) is in phase with a radiation field of a charged particle and synchronized with the 

ultra-relativistic particle, moving along the waveguide axis. This circumstance is clearly 

demonstrated in Figure 1.2, where only one dispersion curve, corresponding to the above-

mentioned mode, intersects a line describing the phase velocity equal to the speed of light. 

The important results of this chapter also include the calculation of the attenuation 

coefficient of the synchronous mode for the resonance frequency (Eq. 1.8), which is 

defined as the real component of its phase. 

The remarkable properties of the phase of synchronous mode, presented in Figure 

1.3, are also determined. 

The second main direction of this chapter is to investigate the mechanism of 

synchronization of the electromagnetic eigenoscillations of a two-layer flat metallic 

structure. 

Equations for the eigenvalue numbers of free vibrations in the structure under 

consideration are obtained. A subsystem of free oscillations, synchronous with a particle, 

moving along a rectilinear trajectory parallel to the symmetry plane of structure, is 

distinguished from the complete set of free oscillations. Equations for eigenvalues are 

obtained both for a complete system of free oscillations and for their synchronous 
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subsystem. A unique relationship is established between the roots of the equations for 

synchronous oscillations and the complex poles of the integrand for the longitudinal 

impedance. Based on graphic constructions the behavioral regularities of eigenvalues are 

analyzed. 

Important difference between the mechanisms of formation of synchronous 

oscillations for two-layer cylindrical and planar structures should be mentioned. In the first 

case, we have a single synchronous mode, with synchronization being achieved only at 

the resonant frequency   √    ⁄ . In the second case, there is an infinite set of eigen-

oscillations, synchronous on the entire infinite frequency range. The radiation field of a 

particle is formed by the total contribution of the entire infinite sequence of natural 

synchronous oscillations of the structure. 

As will be shown in the second chapter, the result of the total contribution of 

synchronous oscillations is radiation with a narrow-band frequency spectrum and a single 

resonant frequency   √   ⁄ . 
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Chapter 2: Accelerating structures with flat geometry 

2.1 Introduction 

Impedances and wake functions in multilayer cylindrical structures are studied in 

[72]. It is shown that under certain conditions there is a narrow-band longitudinal 

impedance in the structure. The study of dispersive relations of a two-layer cylindrical 

structure shows that in the same conditions the structure becomes a high frequency, 

single slowly (    ) traveling wave structure. Single-mode structures are good 

candidates both for novel accelerating structures and for being sources of high frequency 

monochromatic radiation. As it is shown in previous chapter, a single-mode structure can 

be used also for bunch compression and for microbunching. To be a high frequency 

single-mode structure, it requires a high accuracy    – sub-   low conductivity internal 

coating, and an inner diameter of about several   , which is technically a complex 

problem for structures with    diameters. 

In this chapter multilayer flat metallic structure is studied as an alternative of the 

abovementioned cylindrical structure. The longitudinal impedance and dispersive relations 

of the structure are presented, wake fields generated by a particle travelling through the 

structure are observed. Analyses of symmetrical and asymmetrical multilayer flat 

waveguides are performed. Conditions in which the longitudinal impedance has a narrow-

band resonance are obtained. Comparison of properties of multilayer flat metallic structure 

with cylindrical structure is done. 

To calculate electromagnetic fields, the field matching technique, that implies the 

continuity of the tangential components of electric and magnetic fields at the borders of 

the layers, is used for solving Maxwell equation. The matrix formalism described in [72] is 

used to couple electromagnetic field tangential components in two borders of a layer. The 

longitudinal impedance of the structure and wake fields in it are obtained via Fourier 

inverse transformation of electromagnetic fields. 
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2.2 Multilayer flat structure 

We will start with the most general case: a structure consisting of two parallel 

multilayer infinite plates (Figure 2.1). The boundaries between layers are infinite parallel 

planes. The number of layers in the top  ( )  and bottom  ( )  plates can generally be 

unequal ( ( )   ( )). The filling of layers may be both dielectric or metallic and in general 

is characterized by a static complex dielectric permittivity   
( )

          ( )      , 

magnetic permeability   
( )

and conductivity   
( )

. The dielectric constant material layer can 

be written as   ̃
( )

   
( )

    
( )

 ⁄ , where   is the frequency. For the majority of highly 

conductive metals   
( )

   ; for non-magnetic materials   
( )

    (      permittivity and 

magnetic permeability of vacuum). The thickness of  -th layer is   
( )

. The distance from 

the symmetry plane of the vacuum chamber to the boundary planes, separating layers are 

equal to   
( )

;     
( )

   
( )

   
( )

              ( )  (for upper half-space). The upper and 

lower unbounded regions can be filled by an arbitrary medium, the electromagnetic 

properties of which are characterized by parameters  
 ̃( )  

( )
  

 ( )  

( )
   

 ( )  

( )
 ⁄ , 

 
 ( )  

( )
   . 

The point-like charge is traveling through the layer metallic tube with velocity   

parallel to the  -axis at vertical offset  . 

 

Figure 2.1: Geometry of multilayer flat metallic structure. 
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Maxwell’s equations must be solved to calculate EM fields excited by the point 

charge. Cartesian coordinates  ⃗  (     ) are used, where   is the direction of vertical 

axis. For ( ( )  ( ))-layer tube there are  ( )   ( )    regions (including the inner and two 

outer regions of the structure) and  ( )   ( )    borders. The complete number of 

matching equations is  ( ( )   ( )   ) with  ( ( )   ( )   ) unknown coefficients as in 

each border there are four boundary conditions that match tangential (           ) 

components of electromagnetic fields. 

Radiation fields are searched by the method of partial areas [92]. The 

electromagnetic fields are derived by differently presenting the fields in three regions: 

charge existing region (         ) , metallic layers of the structure (    ( )    

    ,        ( )) and outer vacuum region (      ( ),     ( )). In all regions the 

solution is sought in the form of general solution of the homogeneous Maxwell’s equations 

except for the area between the plates. Here, a particular solution of inhomogeneous 

Maxwell's equations is added to the general solution of the homogeneous Maxwell’s 

equations. 

The electromagnetic fields and point charge are presented via Fourier 

transformation as: 

 (     )  ∫  ̃(       ) 
       (    )      

 

  

 (     )  ∫   ̃(       ) 
               

 

  

  (2.1) 

where    
 ⁄  is the wave number. 

Boundary conditions state that tangential components of full electric and magnetic 

fields should be continuous at layer boundaries. 

  
 (   )    

   (   )

  
 (   )    

   (   )

  
 (   )    

   (   )

  
 (   )    

   (   )

     (2.2) 

where   and   signs correspond to layer boundaries in the upper and lower regions, 

respectively. 
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An electric charge traveling in the structure produces an electromagnetic field, 

which can be presented as a sum of two parts: 

                            (2.3) 

where       are the electric and magnetic fields in the case of perfectly conducting plates 

and     are the solutions of source free Maxwell’s equations with a metallic current     . 

The dependence of the last ones on source particles is determined by boundary conditions. 

Firstly, electric    and magnetic    fields in the perfectly conducting parallel plates 

with a static charge in the structure are calculated, then the fields, when there is a charge 

traveling in the direction of structure axis, can be obtained via Lorentz transformation [92]. 

Maxwell’s equations for the structure with a static charge   in it are: 

     
 

  
 

        

      

      

      (2.4) 

where   is the nabla operator. 

Using Fourier transformation in Maxwell’s equations and expressing electric field   

and   components via   component, the wave equation for a point charge can be derived: 

     

   
      

 
 

     
    (   )     (2.5) 

where   √  
    

 
 and   is the point charge deviation from the center of   axis. 

The solution of Eq. 2.5 is a sum of homogenous equation solution ( ̃   ) and a 

particular solution ( ̃   ). 

Presenting the solution of homogenous part as a sum of hyperbolic cosine and sine 

with unknown coefficients, and finding a particular solution by integrating two parts of the 

wave equation, the solution can be obtained. 

   

 (       )   
    

      

    ( (   ))     ( (   ))

    (   )
   (2.6) 
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where   sign stands for an electric field in upper part of the structure (    ) and – for an 

electric field in lower part (    ). 

  and   components of the electric field can be obtained via Faraday’s low and 

magnetic field is zero for a static charge. 

   

 (       )   
    

      

    ( (   ))     ( (   ))

    (   )

   

 (       )   
 

     

   ( (   ))     ( (   ))

    (   )
    

   (2.7) 

The Fourier components of the electromagnetic fields of a moving charge can be 

obtained via Lorentz transformation: 

   

 (       )   
 

  

    

       

    (  (   ))     (  (   ))

    (    )
    

   

 (       )      

  
   

 (       )                                     

   

 (       )      
  

  
    (  (   ))   

 (       )

   

 (     )                                                                             

   

 (       )  
 

  
   

 (       )                                           

   

 (       )   
 

  
   

 (       )                                       

 (2.8) 

Note that the variable of integration is replaced by      
  ⁄  and   √  

  (
  
 

 
)
 

   . 

We write fields in Eq. 2.8 in the form of plane waves: 

       
          

          
         

( )
 ( )               

( )
 ( )      

       
          

          
         

( )
 ( )               

( )
 ( )      

 (2.9) 

where  

    
( )

         

      
    (   )     ( (   ))         

( )
       

( )

    
( )

   
   

      
   (   )  { (   )}        

( )
    

( )
      

( )

    
( )

  
 

     
   (   )  { (   )}                          

( )
      

( )
   

  (2.10) 

On the metallic surfaces, the electromagnetic field components are: 
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(        )     

(        )   

   
(        )  

 

     

    (  (   ))

    (    )
     

   
(        )  

 

     

 

  

    (  (   ))

    (    )
 

   
(        )     

(        )   

   (2.11) 

The only non-zero tangential component at the boundaries      is a component 

   
, which in ultrarelativistic approximation (   ) is 

   
(        )  

 

      

    (  (   ))

    (    )
    (2.12) 

As it was mentioned, the total electromagnetic field excited by a point charge 

traveling in the multilayer structure was presented as a sum of two parts. Now the second 

part of total electromagnetic field will be calculated, i.e. solutions of the source free 

Maxwell’s equations with a metallic current     . The fields inside layers are sought in 

the form of a general solution of the homogenous Maxwell’s equations. 

 ( )(     )    
( )(     )    

( )(     )

 ( )(     )    
( )(     )    

( )(     )
   (2.13) 

where  

    
( )(     )  ∫ ∫     

( )(       ) 
 (      (    )) 

  
     

 

  

    
( )(     )  ∫ ∫     

( )(       ) 
 (      (    )) 

  
     

 

  

  (2.14) 

with 

    
( )(       )      

( )
    

( )
 

    
( )(       )  

   (      (    ))

    
   [    

( )(       ) 
 (      (    ))]

 (2.15) 

For the inner region (         ) we should add the partial solution (     ) of 

inhomogeneous Maxwell’s equation (Eq. 2.8) to the general solution of the homogeneous 

one: 
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 ( )(     )    
( )(     )    

( )(     )    (     )

 ( )(     )    
( )(     )    

( )(     )    (     )
  (2.16) 

Finally, for the upper and lower outer regions, fields are sought to be vanishing in 

infinity (at     ) 

 ( ( )  )(     )    

( ( )  )
(     )

 ( ( )  )(     )    

( ( )  )
(     )

 (  ( )  )(     )    

(  ( )  )
(     )

 (  ( )  )(     )    

(  ( )  )
(     )

   (2.17) 

for top (    ( )  ) and bottom (      ( )  ) regions, respectively. 

As it is mentioned, we obtain a system of  (     ) equations for the same 

number of unknown amplitudes. Amplitudes     
  and     

  can be presented by     
      

  

and     
      

       via Gauss’s low 

    
   

      
     

     
 

  

    
   

      
     

     
 

  

     (2.18) 

and magnetic field components can be derived via Faraday’s low. 

To determine the electromagnetic field we will use the field matching technique that 

implies the continuity of the tangential components of electromagnetic fields at the borders 

of layers (     ). We are interested in tangential components of fields, so we will 

introduce the tangential field vector  ̂ (  
    

     
     

 ). We will use the matrix approach 

introduced in [72] to obtain electromagnetic fields in the vacuum region. 

Connection between the components of the fields and amplitudes is realized by 

using the basic transformation matrixes: 



- 33 - 
 

 ̂ 
( )( )  

    
  

  
 

(

 
 

  
    

         
     

    
     

  
   

   

    
         )

 
 

   (2.19) 

 ̂ 
( )( )  

   
  

  
 

(

 
 

    
  

           
   

     
     

  
   

 

      
       )

 
 

   (2.20) 

 ̂( )( )   ̂ 
( )( )  ̂ 

( )( )    (2.21) 

where   
( )    

  (   ( ) ( )  )  
 . 

Let us establish a connection between the field values on the lower borders of 

neighboring layers. The fields on upper and lower borders of the  -th layer of the upper 

half-space can be expressed in terms of values having the same amplitudes: 

 ̂ (  )   ̂ 
 (  ) ̂

 

 ̂ (    )   ̂ 
 (    ) ̂

 
      ̂ (    )   ̂ 

 (    ) ̂ 
 (  )

   ̂ (  ) (2.22) 

From field tangential component continuity ( ̂   (    )   ̂ (    )), one obtains 

 ̂   (    )   ̂ 
 (    ) ̂ 

 (  )
   ̂ (  )   (2.23) 

Consistent application of (2.23) for upper half-spaces gives 

 ̂ ( )  (  ( )  )   ( ) ̂ (  )    (2.24) 

where  ( )  ∏   
( ) ( )

    and   
( )   ̂( )(    ) ̂

( )(  )
  . 

Similar relation can be obtained for lower half-space 

 ̂
( ( ( )  ))

(   ( ( )  ))   ( ) ̂( )(    )  (2.25) 

where  ( )  ∏   
( ) ( )

   ,     
( )   ̂(  )(   (   )) ̂

(  )(    )
  . 

For the symmetrical case   
( )    

( )  
 and  ( )  ∏   

( )  
 
   . 
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Given the matching conditions on the borders of the plates, we finally have 

 ̂ 

( ( )  )
(  ( )  ) ̂

(  )    [ ̂( )(  ) ̂
( )   ̂( )]      (2.26) 

 ̂ 

( ( ( )  ))
(   ( ( )  ))  ̂(  )    [ ̂( )(    ) ̂

( )   ̂( )]     (2.27) 

where  ̂(   ) and  ̂(   ) are the single-column matrixes: 

 ̂(   )  {{ } { } {   
( )

     (   
( )

 )     [  
( )(    )]}  { }}

 ̂(  )  {{    

( ( )  )
}  {    

( ( )  )
}  {    

( ( ( )  ))
}  {    

( ( ( )  ))
}}

 (2.28) 

In Eq. 2.9 and Eq. 2.10, the condition that fields are vanishing on      is taken 

into account. 

The amplitudes  ̂( ) may be expressed in terms of  ̂(  ) amplitudes, using Eq. 2.26 

and Eq. 2.27 

 ̂( )   ̂  ̂(  )   ̂( )(  )
   ̂( )

 ̂( )   ̂  ̂(  )   ̂( )(    )
   ̂( )

    (2.29) 

where 

 ̂   ̂( )(  )
      

 ̂ 

( ( )  )
(  ( )  )

 ̂   ̂( )(    )
      

 ̂ 

( ( ( )  ))
(   ( ( )  ))

  (2.30) 

Eliminating the outer layer coefficients, we obtain explicit expressions for the 

amplitudes of the particle radiation field in the space between the plates: 

 ̂( )  
 

 
( ̂( ) ̂( )  

 ̂( )   ̂( ))    (2.31) 

with 

 ̂( )   ̂   ̂ ,  ̂( )   ̂( )(  )
   ̂( )   ̂( )(    )

   ̂( )  (2.32) 
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Amplitudes of the radiation field for the structure with an arbitrary number of layers 

in each of the plates can numerically be obtained by Eq. 2.31. The particle velocity can 

also be arbitrary. 

2.3 Two-layer flat structure 

Note that in the symmetric case (         
( )    

(  )  ( )   ( ))    
( )    

( )  
 

and  ( )   ( )  
. For some important special cases, it is possible to obtain explicit 

expressions. 

 

Figure 2.2: Two-layer flat structure. Geometry and electromagnetic parameters. 

An important special case is a symmetrical two-layer structure with unbounded 

external walls (Figure 2.2). We write the amplitudes of the longitudinal electric component 

of the radiation field of the particles in the vacuum region between the plates (corresponds 

to Eq. 2.15 for    ) 

      
( )

       (  
( )

 )        (  
( )

 )   (2.33) 

where 

    
   

      

  

  
 
        (  

( )
  )

  
   

 ,         
   

      

  

  
 
        (  

( )
  )

  
   

  (2.34) 

The following notations are made in Eq. 2.34 

    
( )

[(  
( ) 

   
( ) 

) (  
   

    
( ) 

  
 )  (  

( ) 
   

 )  ] 
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( )
  )    

( )
      (  
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      (  
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      (  
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  ̃     (  
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    (  
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    (  
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     (  
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( )  
( )(  

    
 )     (   
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( ) 
   

    
              

Expressions 2.33–2.35 are a generalization of the well-known result [92] on the two-

layer structure for an arbitrary velocity of the particle. In the transition to single-layer 

unbounded plates (  
( )    

( ))  the first term in   vanishes. In the transition to ultra-

relativistic approximation (  
( )    ) factor   vanishes. The following are the values of 

field amplitudes for the structure, consisting of two unbounded parallel plates and an 

arbitrary particle velocity. 
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( )
  )   

( )
  

     (  
( )

  ))

    
   

     

  

  

(  
    

( ) 
)  

( )
   

( )
(  

    
( ) 

)     (  
( )

  )

(  
( )

    (  
( )

  )   
( )

    (  
( )

  ))(  
( )

  
     (  
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     (  
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  ))

 (2.36) 

At   
( )     and     amplitudes in Eq. 2.36 coincide with the corresponding 

amplitudes in [92], obtained in the ultra-relativistic approximation. 
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In the case of high conductivity of outer layer, it can be considered as a perfect 

conductor. Transition to this case is made by means of equating to infinity the wave 

number   
( )

 in Eq. 2.34. In this case the field amplitudes are: 

     
   

      

  

  

(  
    

( ) 
)  

( )
    (    

( )
 )    

( )
(  

( ) 
   

 )      (  
( )

 )     (  
( )

  )

  
   

 

     
   

      

  

  

(  
    

( ) 
)  

( )
    (    
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 )    

( )
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 )      (  
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 )     (  
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 (2.37) 

where the following notations are made: 
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Below the longitudinal electric field, in case of asymmetric filling of plates, is 

presented. A structure with perfectly conducting plates, and only one of them covered with 

a layer of finite conductivity material is considered. 
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2.4 Impedance of two-layer symmetrical flat structure 

As it is mentioned in the first chapter, the longitudinal impedance is a Fourier 

transformation of normalized longitudinal component of Lorentz force. The general 

expression of Lorentz force is: 

 (     )   [ (     )     (     )]   (2.41) 
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The longitudinal (  direction) impedance   (      ) is a Fourier transformation of 

normalized longitudinal component of Lorenz force   (       ) . In the case, when a 

charge   is traveling along   axis, the longitudinal component of Lorentz force becomes 

  (       )     (       )    (2.42) 

and consequently the longitudinal impedance becomes 

  (      )   
 

  
∫   (       ) 

        
 

  
  (2.43) 

Consider the most important and at the same time a quite simple special case: 

symmetrical two-layer flat structure. In the case of the perfectly conductive outer layer 

(  
( )   ) and the particle velocity equal to the velocity of light (  

( )        ), the 

formulae Eq. 2.37 is simplified to the form 
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where 
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This case fairly well simulates the highly conducting outer wall and is a two-

dimensional analogue of a two-layer cylindrical tube, the unique resonant properties were 

discovered earlier. In the cylindrical waveguide, with two-layer metal walls under high 

conductivity of the thick outer wall and the relatively low conductivity of the thin inner layer, 

the radiation of the driving particles has a narrow-band resonance. Resonance is the sole 

and formed by single slowly propagating waveguide mode. We show that the same is true 

also of the two-dimensional two-layer metal structure. 

In the cylindrical case, the resonance frequency is equal to        √    ⁄  (   

waveguide inner radius,   inner layer thickness). Minimum damping (in case of a perfect 
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conductor outer layer) is provided by the condition   
 

√ 
      (         ,   -inner 

layer conductivity). 

First of all, let us demonstrate the single narrow-band extremal nature of the 

longitudinal impedance of the two-dimensional two-layer structure. 

  

Figure 2.3: Real (left) and imaginary (right) parts of the longitudinal impedance of two-layer flat 

structure. On the graphs the thicknesses of the inner layer in micrometers are shown. 

Figure 2.3 shows a series of real and imaginary component distributions for the 

longitudinal impedance of a two-layer planar structure with a perfectly conducting outer 

layer (Figure 4). The distance between the plates is      (half-height        ) and the 

conductivity of the inner layer is               The numbers on the curves in the graph 

indicate the thickness of the inner layer (  ):     (   )  2  (   ) and so on. As we see, 

the longitudinal impedance has a single narrow-band resonance with a resonance 

frequency dependent on the thickness of the inner layer. As is shown in Table 2.1, it is 

quite well defined by the formula  

     
 

  
√

 

   
     (2.46) 

where      ⁄  is a half-height of a structure. 
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  (  ) 1 2 3 4 5 6 7 8 10 16 

     (   ) 0.477 0.338 0.276 0.239 0.214 0.195 0.180 0.169 0.151 0.119 

     (   ) 0.479 0.339 0.277 0.241 0.215 0.197 0.183 0.171 0.154 0.124 

   (   ) 0.479 0.503 0.277 0.241 0.215 0.197 0.183 0.171 0.154 0.124 

   0.251 0.339 0.754 1.001 1.257 1.508 1.760 2.011 2.513 4.021 

Table 2.1: Resonance frequencies of two-layer flat structure, calculated analytically (    ), 

numerically (    ), impedance imaginary component vanishing frequency (  ) and a 

parameter   . 

In Table 2.1: line      shows the resonance frequency calculated by Eq. 2.46; in line 

     the resonance frequencies calculated numerically by the exact formulae are given; 

line    shows the frequency values in which the imaginary components of the impedance 

vanish; in the last row the values of the parameter    
 

 
       are given. As the table 

shows, there is a good coincidence between the frequency values      and     . Thus, the 

resonant frequency in a flat two-layer metal structure, in contrast to the corresponding 

cylindrical structure, is defined by Eq. 2.46. In cylindrical case      
 

  
√

 

   
., i.e. √  times 

higher. There is also a complete coincidence of frequencies      and   , i.e. the maximum 

value of the impedance is purely real. Comparing the maximum values of the real 

component of impedance distributions (Figure 2.3, left) with the corresponding parameter 

   values, we note the following regularities: impedance reaches the highest value at 

      , which corresponds to value of parameter    equal to unity. The maximum values 

of the other curves (Figure 2.3, left) on either side of it, decrease along with the distance. 

As it is shown in Figure 2.3 (left), there is a pair of curves, maximum values of 

which are located on the same level. These curves correspond to a pair of mutually    

parameter reverse values. Thus, as it follows from Figure 2.3 and Table 2.1:        ⁄  

and       ⁄ . Similar phenomena occur also in a two-layer cylindrical waveguide. The 

difference is in the value of the parameter   :   
 

 
      for planar and   

 

√ 
      for 

cylindrical cases, i.e. √  times less. Recall that the resonance frequencies in the planar 

case are √  times less than in the corresponding cylindrical:       √    ⁄  (   inner half 

height of planar structure) instead of       √    ⁄  (   inner radius of cylinder). Such 
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relations for broadband resonance frequencies have been identified in [93] for the single-

layer resistive two-dimensional flat and cylindrical structures (Figure 2.4). For comparison, 

Figure 2.4 shows the longitudinal impedance distributions for a two-layer metal tube with 

an ideally conducting outer layer. Its geometric and electromagnetic parameters are 

brought into correspondence with the parameters of the flat two-layer metal structure 

considered above. The internal radius of the cylinder        , the conductivity of the 

inner layer is               , and its thickness varies between      and     . 

  

Figure 2.4: Real (left) and imaginary (right) parts of the longitudinal impedance of two-layer 

cylindrical structure. On the graphs, the thicknesses of the inner layer in microns are shown. 

The wake potential is defined as the inverse Fourier transform of impedance (2.43) 

  (     )  ∫   (     )
 

  
       ,           (2.47) 

Figure 2.5 shows the distribution of the longitudinal wake potential for three different 

thicknesses of the inner layer at the fixed conductivity. In all three cases the wake 

potentials are quasi-periodic functions with the period    given by the resonant frequency 

        ⁄       
 

  
√     . The latter indicates the particle radiation monochromaticity 

similar to two-layer cylindrical metal waveguide [74]. 
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Figure 2.5: Longitudinal wake potential of the two-layer flat structure for different values of inner 

layer thickness and the fixed conductivity               ; half-height of structure        . 

For comparison, the wake function for two unbounded infinite single-layer plates with halt-width 

        and                is given (dashed curve). 

Figure 2.6 shows the wake potential distributions for a two-layer cylindrical structure. 

 

Figure 2.6: Longitudinal wake potential of the two-layer cylindrical waveguide for different values of 

inner layer thickness and the fixed conductivity               ; inner radius of cylinder is 

equal to half height of flat structure (Figure 2.5)           . The designations of the curves 

correspond to the thicknesses of the inner coating in microns. The wake potential for unbounded 

single-layer resistive cylinder with radius         and                is given in addition 

(dashed curve). 
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As in the plane case, the wake function of a cylindrical structure is a quasi-

monochromatic oscillating damped function with a single oscillation frequency      

 

  
√     . The period of the oscillations is         ⁄  (√  times less than the one of the 

flat case). 

Comparing the curves for impedances and wake potentials for a two-layer 

cylindrical structure, we notice from Figure 2.4 (curve with label “2.5”), that in the 

frequency representation the maximum quality factor (maximum amplitude) of the 

impedance is reached at the thickness of inner coating equal to       . In the space-time 

representation this correlates with the minimum attenuation of the wake (Figure 2.6, curve 

with label “2.5”). In the cylindrical case, the attenuation coefficient is proportional to the 

value of        , with   
 

√ 
     and attains its minimum value at     [74]. 

The above-mentioned patterns (Figure 2.3 and Figure 2.5) are revealed in case of a 

fixed value of the inner layer conductivity. The regularities of the structure with a fixed 

thickness of the inner layer are denoted in Figure 2.7. The Figure shows the distribution of 

amplitude values of the impedance curve at       and               

            , which corresponds to the range of variation of   
 

√ 
     parameter 

within          . 
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Figure 2.7: Distribution of resonance values of the two-layer flat structure impedance as a function 

of the inner layer conductivity   for fixed geometric parameters(                ). The 

horizontal dashed lines indicate the mutually conjugated values of the conductivities    and    for 

which       ⁄  with   ( )      ⁄      ( ). The red dots indicate the maximum possible level of 

impedance for a given thickness of the inner layer       . 

A significant difference between the cylindrical and flat cases is that in the first case 

the optimal condition (for the maximum Q of the system) is the fulfillment of equality 

  
 

√ 
      . In the second case, when fixing the conductivity value of the inner layer σ, 

the condition for optimizing the structure is the equality   
 

 
      , i.e. the optimum 

layer thickness in this case is determined through its conductivity   by the expression 

  
 

   
. On the other hand, the fixed thickness of the inner layer   leads to the 

optimization condition   
 

√ 
       and to the optimal conductivity of the layer   

√ 

   
. 

Thus, for a given conductivity of the inner layer, in order to select the optimum thickness of 

the layer, it is necessary to use the relation   
 

   
, and for a given layer thickness d, its 

optimal conductivity is determined by the expression   
√ 

   
. 
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Figure 2.8: Parameter optimization of two-dimensional two-layer metal structure with an initial 

       thickness fixation of the inner layer. 

Figure 2.8 shows the results of a sequential optimization process with the initial 

      thickness fixation of the inner layer. The figure shows 5 curves depicting the 

distribution of longitudinal impedances for the half-height of structure       . Curve  1” 

(black solid curve) is plotted for the thickness of the inner layer        with a 

conductivity              , determined by the formula   
√ 

   
, i.e. curve “1” represents 

the impedance with the highest possible amplitude level, achievable at        by means 

of a corresponding selection of the inner layer conductivity. Afterwards, fixing the received 

value of conductivity, we determine the optimum value of layer thickness by the formula 

   
 

   
         , wich is optimal for this value of conductivity. As a result, we obtain 

curve 2 (red solid curve). Optimization leads to an increase in the thickness of the inner 

layer and, consequently, to a decrease in the resonant frequency. Further optimization 

again assumes the use of the formula    
√ 

   
. As a result, we have curve “3” with a 

reduced conductivity                and a resonance conserved frequency. This 

procedure, consisting of the successive application of formulas    
 

    
 and      

√ 

    
, 

can be repeated many times, successively increasing the thickness of the inner layer and 

its conductivity and decreasing the resonance frequency (Figure 2.8). 
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An alternative way to perform a series of optimizations is shown in Figure 2.9. It is 

obtained by firstly fixing the conductivity of the inner layer of the structure. In the figure 

curve “1” corresponds to the originally selected conductivity of the inner layer     

          . Its thickness is optimized using the formula   
 

   
        . Curve “2” (red, 

dashed) is obtained by optimizing the conductivity for the resulting length:    
√ 

   
 

           . The resonant frequency does not change in this case. The further 

optimization step, corresponding to curve “3”, is carried out using the formula    
 

    
 

       . This optimization stage is accompanied by an increase in the thickness of inner 

layer and by a decrease of resonant frequency. At the next stage, the optimum 

conductivity value is determined for the layer new thickness    
√ 

    
            (curve 

“3”) and so on. 

 

Figure 2.9: Optimization of the parameters of a two-dimensional two-layer metal structure with an 

initial fixation of the inner layer conductivity               . 

Thus, there are two different possibilities to optimize a two-dimensional two-layer 

metal structure: the first (Figure 2.8) is accompanied by an increase of material 

conductivity of the inner layer, while the second (Figure 2.9) lowers it. 

The practical significance of the above study is the ability to correctly select the 

thickness of the inner layer and the electromagnetic characteristics of the material filling it. 



- 47 - 
 

This, for example, was successfully done when experimentally testing the resonant 

properties of a two-layer metal structure [90] with severe limitations on the measuring 

equipment, the frequency range of which was limited by 14 GHz bandwidth. 

 

Figure: 2.10: Longitudinal impedance of cylindrical pipe with optimized parameters: optimal inner 

layer width          for given conductivity               (left one); optimal inner layer 

conductivity               for given layer width        (right one). 

In the case of a two-layer cylindrical structure, the picture is much simpler. In this 

case, the character of narrow-band resonance of the impedance curve is completely due 

to the unity proximity of parameter   
 

√ 
     [66]. The impedance curve is completely 

determined by setting two parameters (         or    ) out of three (     ). 

2.5 Approximate analytical representation of impedance 

The integral representation of the longitudinal impedance (Eq. 2.43 – Eq. 2.45) is 

accurate (exact) and, as was shown above, it is possible to calculate both the impedance 

and the wake potential (represented in the form of a double integral (Eq. 2.47)). For 

calculation, a corresponding software package has been developed by using the software 

package Mathematica. The integral form of the expressions for the impedance and the 

wake function, as well as the complexity of the integrand leads, however, to some 

difficulties in interpreting them. Integration by means of its contour deformation and its 

transfer to the complex plane is associated by taking into account (in addition to complex 
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poles of denominator) also the integration along the cuts on Riemann surface. The latter 

circumstance is connected with the non-analyticity of the function 

  
( )  √  

  (   ( ) ( )  )  , which leads to the non-analyticity of the denominator of 

the integrand as a whole. 

The analysis of the integrand in (Eq. 2.43) is performed taking into account the 

smallness of parameter   (    ), characterizing the thickness of the inner layer. For this 

purpose, we rewrite the function     (Eq. 2.44) in the form 

    
     

   

    

 ̃
     ̃   ̃ 

  ̃ 
     (2.48) 

where  
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After multiplication, the denominator in Eq. 2.48 takes the form 
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( )  (       )  
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Further, we expand  ̃ in series with respect to the small parameter   and leave the 

first three terms of the expansion (       and  ). As a result, we get 

 ̃      ⁄            (2.51) 

where  
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  ((       )  
 (    )      

 
(    ))

   
 

 
(  
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 (       ))   (     )

      (       )  
 (    )

  (2.52) 

Expression 2.51, with taking into account Eq. 2.52, no longer contains square roots 

of the integration variables and is analytical.  
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Further, supposing   
      , (in the cylindrical case this approximation is 

equivalent to the one for the permittivity of the metal      ⁄ , which is valid for not very 

large frequencies) we have: 

  
( ) 

                 (2.53) 

and instead of Eq. 2.52, we can write 

    
 

 
       ((       )  

 (    )       (    ))

   
 

 
(   

       (  
    ))  (     )

      (       )  
 (    )

 (2.54) 

Figures (2.11–2.15) show the comparison of calculations of exact formulae with the 

approximated ones (Eq. 2.51 – Eq. 2.54) for three different half-widths of a plane structure: 

         (Figure 2.11 and Figure 2.12),         (Figure 2.13 and Figure 2.14) and 

        (Figure 2.15). The thickness of the inner layer is chosen equal to     . Dashed 

red curves represent the results obtained from exact formulae. The approximate results 

are represented by solid black curves. 

  

Fig. 2.11: Real (left) and imaginary (right) components of the longitudinal impedance of a two-layer 

metal structure, calculated by exact formulae (red, dashed) and using the approximation (2.48, 

2.51) (black, solid): 1 -                       ;         2 -                       ;      

3 -                 ;                  . 
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Fig. 2.12. Real (left) and imaginary (right) components of the longitudinal impedance of a two-layer 

metal structure, calculated by exact formulae (dashed) and using the approximation (2.48, 2.51) 

(black, solid): 1 -                      ;      2 -                       ;        

            . 

As can be seen from Figure 2.11 and Figure 2.13, for relatively large values of the 

half-widths of the structure (             ) there is a complete coincidence of the 

approximation calculations with the exact ones even for much larger (in comparison with 

unity) values of the parameter   
 

√ 
    (up to     ). Significant discrepancies occur at 

large values of this parameter       (Figure 2.12 and Figure 2.14). 

  

Fig. 2.13: Real (left) and imaginary (right) components of the longitudinal impedance of a two-layer 

metal structure, calculated by exact formulae (red, dashed) and using the approximation (2.48, 

2.51) (black, solid): 1 -                       ;        2 -                       ;        

3 -                 ;               . 
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Fig. 2.14: Real (left) and imaginary (right) components of the longitudinal impedance of a two-layer 

metal structure, calculated by exact formulae (dashed) and using the approximation (2.48, 2.51) 

(black, solid): 1 -                      ;      2 -                       ;         

           . 

As follows from Figure 2.15, a decrease in the gap between the plates leads to a 

toughening of requirement   to be close to unity. Thus, for      (curve “1” on Figure 2.15) 

there is an essential discrepancy between the exact and approximate solutions, whereas 

for       (curve “2” on Figure 2.15) they practically coincide. 

  

Fig. 2.15: Real (left) and imaginary (right) components of the longitudinal impedance of a two-layer 

metal structure, calculated by exact formulae (dashed) and using the approximation (2.48, 2.51) 

(black, solid): 1 -                       ;       2 -                      ;         

           . 

Further simplification of the integrand (Eq. 2.50 – Eq. 2.53) is achieved by replacing 

the hypergeometric functions by their decomposition. The expansions in a series of 

hypergeometric functions   ( ) and   ( ) have the following form [94]: 
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Inserting Eq. 2.55 into Eq. 2.54 and leaving the first N terms of the expansion in 

them, instead of Eq. 2.48 we have the following: 
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with  
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     (2.59) 

In this approximation, the denominator (Eq. 2.57) is represented in the form of an 

algebraic polynomial of 2N-th order in powers of    

 ̃  ∑     
   

       (2.60) 

and can be written in a form containing its complex roots              

 ̃     ∏ (     )
  
       (2.61) 

Thus, Eq. 2.56 can be rewritten as follows: 

   
   

   

    

   ∏ (     )
  
   

    (2.62) 

The longitudinal impedance, which is an integral of this expression over   , can 

explicitly be expressed in terms of the roots    of the equation  ̃ (  )    
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The roots    of the equation  ̃ (  )    are determined numerically for an arbitrary 

value of N with the help of the software package Mathematica. 

The longitudinal impedance of a two-layer metal structure calculated by exact and 

approximate formulas formulae is presented in Figure 2.16. In the figure, the black solid 

impedance curves are calculated using the approximate equations 2.51 and 2.53, the blue 

dashed ones are from Eq. 2.63 for     and the red dashed ones are for the impedances 

calculated by exact formula. 

  

Fig. 2.16: Real (left) and imaginary (right) components of the longitudinal impedance of a two-layer 

metal structure, calculated by exact formulae (red, dashed), using the approximation (2.48, 2.51) 

(black, solid) and using approximation (2.60) for n=5 (blue, dashed): 1 -                   

    ;      2 -                      ;                    . 

In Figure 2.16, the impedance curves calculated using the asymptotic (Eq. 2.62) are 

superimposed on the impedance curves shown in Fig. 2.15. 

2.6 Summary 

A method of calculating the longitudinal impedance of a multilayer two-dimensional 

flat structure is presented. The matrix formalism that allows to couple electromagnetic field 

components in the inner and outer regions of the structure has been developed. Non-

ultrarelativistic particle radiation fields in the multilayer flat symmetric and asymmetric 

structure are obtained. Explicit expressions of the radiation fields in two-layer structure 
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with unbounded external walls and in single-layer unbounded structure are derived as a 

special case of fields in multilayer structure. 

An ultrarelativistic particle radiation in a symmetrical two-layer flat structure with 

perfectly conducting outer layer is derived. Longitudinal impedance of this structure with 

low conductivity thin inner layer and high conductivity thick outer layer wall is numerically 

obtained. It is shown that the impedance has a narrow-band resonance. The resonance 

frequency dependence on structure parameters is obtained. Parameter    
 

 
       is 

introduced, which describes the maximum values of impedance. It is shown that 

impedances of structures with reverse   parameters (       ) have the same maximum 

values and reach their highest maximum when    are equal to unity. 
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Chapter 3: Rectangular resonator with two-layer vertical walls 

3.1 Introduction 

In this chapter, dispersion relations are obtained for the electromagnetic eigen-

oscillations in a rectangular resonator with ideally conducting walls. The horizontal (top 

and bottom) walls of this resonator are covered from inside by a thin low-conductive layer. 

In the second chapter it is shown that double-layer parallel plates for appropriate 

parameters have a distinct, narrow band resonance. In this chapter rectangular copper 

cavity with two-layer horizontal walls is observed. Here, unlike the parallel plates, one has 

a discrete set of wavenumbers in all three degrees of freedom. Compared with two-

dimensional structure, the pattern of modal frequency distribution in such a resonator is 

distorted: in addition to the fundamental resonance frequency, a set of secondary 

resonances, caused by side walls, exists. It is important to note the presence of the 

fundamental resonance, fixed by measurements, and caused by the two-layer horizontal 

cavity walls. To be able to distinguish the main mode from secondary resonances, finite 

wall resonator model is developed and resonance frequencies of the resonator are 

calculated. 

In this chapter secondary resonances caused by side walls are obtained. The 

criterions for the choice of resonator materials are interpreted and resonance frequencies 

are predicted via the resonator model with ideal conducting walls. The choice is 

conditioned by the frequency bandwidth of the experimental set-up (      ) and the 

predicted single resonance for two parallel laminated plates (chapter 2). The electro-

dynamical properties of test resonator model (perfectly conducting rectangular cavity with 

inner low conducting layers) are studied. Resonance frequencies of the test structure are 

experimentally measured and a comparison with the predicted resonant frequencies of 

resonator model and two parallel double-layer plates is done. A good agreement between 

these results is obtained. 

The experimentally obtained resonance frequencies are subjected to the laws 

specific to this kind of structures: their value decreases with the increasing height of the 

cavity. At the same time, the difference between the measured and calculated values 
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increases. By decreasing a structure height, the contribution of its sidewalls also 

decreases, that is why for a structure with small height there is a good agreement between 

experimental and theoretical resonant frequencies. 

3.2 IHLCC cavity with ideally conductive walls 

To analytically obtain dispersion relations for a tested cavity, a simplified resonator 

model is studied. It is assumed that all four sidewalls of internal horizontal low conductive 

coatings (IHLCC) cavity are ideally conductive materials, and the upper and lower ideally 

conductive walls are covered by a thin layer of low-conductive material (Fig 3.1). 

 

Figure 3.1: IHLCC cavity shape. 

This model is very close to the cavity with copper walls, so it is expected that the 

analytical results would be in a good agreement with the ones of tested cavity. Exact 

dispersion equations may be obtained for a similar structure by the method of partial areas. 

In this case, three regions may be distinguished: 

1.             top low conductivity material plate 

(3.1) 2.             vacuum chamber of cavity 

3.             bottom low conductivity material plate 

Electric and magnetic fields of cavity in each of the three regions are sought in the 

following form: 

 ⃗⃗   ⃗⃗ 
( )

  ⃗⃗ 
( )

,  ⃗⃗  (   )      ⃗⃗ ,           (3.2) 
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where          
(   )

 are arbitrary amplitudes,              and 

  √  (      )    
 ,   

 

 
 √  

    
    

    (3.4) 

The boundary conditions on the perfectly conducting sidewalls are 

           

           
 at  

       
       

,           (3.5) 

To satisfy these conditions, horizontal wavenumbers should be in the form of 

   (   )
 

 
    (   )

 

 
               .   , transverse vertical wavenumbers 

should be determined from boundary conditions on low-conductive layer surfaces and 

vertical walls. 

On vacuum-low conductive layer borders, from the continuity of tangential electric 

and magnetic field components, we have: 

                      

                      
  at          (3.6) 

                      

                      
  at          (3.7) 

On the outer boundaries, between low conductive layers and ideal conductors, 

electrical tangential components of fields must vanish: 

              

              
   at  

      

       
  (3.8) 
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Using Maxwell's equation     ⃗⃗ 
(   )   , the amplitudes      

(   )
 can be expressed by 

     
(   )

 and      
(   )

. Thus, we have a linear homogeneous system consisting of 12 equations 

(Eq. 3.6 - Eq. 3.8) and containing the same number of indeterminate coefficients:     
(   )

, 

    
(   )

 with        . The condition for the existence of non-trivial solutions of this system is 

the vanishing of its determinant:  

                  (3.9) 

where 

         (  )  (    )       (    )  (    )  (3.10.a) 

        (    )  (     )       (    )  (     )  (3.10.b) 

           (    )  (    )      
       (    )  (    )  (3.10.c) 

        
       (    )  (    )         (    )  (    )  (3.10.d) 

where     √   
     

        ,   
 

 
 √   

     
     

                . 

As a result we have four independent dispersion equations: 

                   (3.11) 

Each of these four equations includes three eigenvalues:         and    . 

Moreover, the horizontal transverse     and longitudinal     wave numbers are fixed for 

given numbers   and  . They form two infinite sequences generated by integer indices   

and  . Thus, each of equations (Eq. 3.10.a -3.10d) defines the sequence of     (  

       ) values for each fixed combination of indices   and  . From these equations we 

get sequences of eigenvalues        
( )  (         ) for        , which are dependent 

on   and  . 

Let us compare the obtained expressions with the corresponding ones, obtained for 

the two-layer flat structure in chapter 1 (1.24): 
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Obviously, there is a correspondence:                 . A complete 

coincidence cannot take place, since in the case of an infinite two-dimensional 

structure, the variables    and    are integration variables, but in the case of a 

resonator, the wave numbers     and     are discrete and fixed for specified 

indexes n and m. 

The standing wave excited in the resonator consists of the imposition of two 

traveling waves propagating in opposite directions: a wave incident on the front wall of the 

resonator ( ⃗⃗ ) and reflected from it ( ⃗⃗ ): 

                        ,                       
 (       ) (3.13) 

The wave  ⃗⃗  can serve as an analog of a wave propagating in an infinite planar 

two-layer structure, generated by a particle. Since its frequency   in this case is complex, 

it can be represented in the form: 

   √      √
√       

 
          √√       

 
   (3.14) 

with        
      

  ,      
     

     
      

   ,       
    

  . 

The real part of (3.14) determines the phase velocity of the wave, and the imaginary 

part characterizes its damping. The phase velocity of the wave, incident on the front wall of 

the resonator, is determined by the following relation: 

    
  { }

  
     (3.15) 

This speed can be either more (at    
      

 ) or less (at    
      

 ) than the speed 

of light, where 
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      √    
    

      
   (3.16) 

Equality    
      

  (at which the wave has a phase velocity equal to the speed of 

light) cannot be fulfilled exactly because    
      

    and    
  are discrete and fixed. The 

condition for the greatest closeness of the phase velocity of a wave to the velocity of light 

is    |   
      

 |. The mode (or set of modes), that satisfies this requirement, forms the 

main resonance arising as a result of the interactions of elementary free oscillations. 

3.3 Pure copper cavity. Measurements and interpretation 

To check the accuracy of manufacturing, first of all experimentally obtained 

resonances of pure copper cavity are compared with the theoretical results of the cavity. 

The resonant behavior of pure copper cavity has experimentally been investigated 

at CANDLE SRI by measuring the transmission S-parameter     (forward voltage gain) [95] 

of the testing cavity, using Network Analyzer ZVB14 [96]. The measurements are 

performed for the rectangular cross-section copper cavities. 

The measured narrow-band extremes are compared with the standing wave 

eigenfrequencies of rectangular cavity with perfectly conducting walls [97], having the 

same dimensions (                               ): 

     
 

 
√(
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 (
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 (
   

 
)
 

              {

             
            
            

  (3.17) 

Note that in IHLCC cavity, when    , both equations (   and   ) are transformed 

to the expression for the vertical wave number of the ideal resonator (Eq. 3.12): 

  (   )    with solution      (   )  ⁄ . Similarly, in the limiting case of      

(      ) we have both from (Eq. 3.10.a) and (Eq. 3.10.b):   (    )    with solution 

     (   )   ⁄ . In these extreme cases, all three eigenvalues are independent from 

each other. 
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N m n q Exp. Calc. N m n q Exp. Calc. 

1 2 2 6 8.04 8.116 1 1 1 12 8.25 8.25 

2 2 2 6 8.12 8.116 2 1 4 8 8.7 8.69 

3 2 2 7 8.48 8.489 3 1 1 13 9.06 9 

4 2 2 8 8.86 8.909 4 3 1 2 9.4 9.405 

5 1 2 13 9.31 9.291 5 1 3 12 9.46 9.453 

6 2 2 9 9.39 9.371 6 3 2 2 9.69 9.684 

7 2 1 10 9.56 9.594 7 2 3 11 9.97 9.976 

8 1 4 10 9.65 9.670 8 3 2 6 10.36 10.358 

9 1 5 6 9.92 9.963 9 3 3 5 10.88 10.872 

10 1 2 14 10.04 10.019 10 3 2 8 10.97 10.99 

11 2 4 5 10.15 10.169 11 1 6 1 11.58 11.539 

12 1 5 7 10.28 10.269 12 1 6 3 11.65 11.636 

13 1 1 15 10.51 10.50 13 3 4 3 11.76 11.750 

14 1 5 8 10.6 10.619 14 1 6 5 11.91 11.922 

15 1 5 9 11.01 11.009 15 1 4 14 11.96 11.960 

16 1 3 15 11.46 11.470 16 3 3 9 12.05 12.050 

17 1 6 5 11.93 11.922 17 1 3 16 12.16 12.160 

18 1 5 12 12.3 12.38 18 3 3 10 12.43 12.440 

19 2 1 15 12.53 12.519 19 3 2 12 12.7 12.700 

20 2 5 8 12.605 12.62 20 3 1 13 13.0 12.996 

21 2 2 15 12.71 12.73 21 2 2 17 13.11 13.088 

22 1 5 13 12.9 12.892 22 3 4 10 13.48 13.468 

23 2 1 16 13.14 13.155       

24 2 3 15 13.33 13.343       

25 2 6 3 13.47 13.486       

26 2 4 6 13.57 13.59       

27 2 5 11 13.7 13.709       

28 2 1 17 13.8 13.802       

29 2 3 16 13.94 13.941       

30 1 5 15 13.98 13.980       

Table 3.1: Comparison of the measured (Exp., GHz) and calculated (Calc., GHz) eigenfrequency 

values of a rectangular cavity of       and       height. 

Tables 3.1 and 3.2 show the correlation of eigenfrequencies of the cavity with the 

perfectly conducting walls, calculated by Eq. 3.12, with measured peaks. 
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N m n q Exp. Calc. N m n q Exp. Calc. 

1 1 4 7 4.12 4.129 10 1 3 10 8.18 8.177 

2 1 4 8 4.33 4.344 11 1 2 12 8.56 8.5666 

3 1 5 2 4.65 4.63 12 2 1 12 8.98 8.9899 

4 1 2 7 5.04 5.057 13 1 4 9 9.17 9.1601 

5 1 3 5 5.52 5.505 14 1 3 12 9.45 9.4533 

6 1 3 16 6.08 6.080 15 2 5 2 9.93 9.9260 

7 
2 3 5 6.66 6.562 16 3 3 9 10.42 10.408 

1 1 10  6.75 17 3 3 10 10.84 10.857 

8 1 4 5 7.55 7.545 18 3 4 7 10.90 10.918 

9 2 3 8 7.85 7.850       

Table 3.2: Comparison of the measured (Exp., GHz) and calculated (Calc., GHz) values of the 

eigenfrequencies of a rectangular cavity with       height. 

As can be seen from Table 3.1 and 3.2, there is a good matching (up to the second 

decimal) between experimentally obtained and calculated eigenvalues. This is achieved 

due to the high precision machining of internal surfaces of the cavity with keeping 

dimensional accuracy. 

The main result of the above research is the establishment of agreement of 

experimentally obtained narrowband peaks with resonant frequencies of the rectangular 

copper cavities. This means that the accuracy of manufacturing of copper resonator 

component allows to obtain the corresponding frequency distribution for the IHLCC cavity 

with acceptable distortions. 

3.4 IHLCC cavity resonance frequency comparison with experimental results 

The transmission     parameters of IHLCC cavity have been measured to perform 

a comparison between resonant behaviors of real structure and IHLCC. 

The defining parameters of the cavity are the following: the height of the inner 

chamber  , the thickness of the low conductive layer   
    

 
, the width   and length   of 

the chamber, conductivity    and relative dielectric constant    of low conductive layer. 

The choice of material and the thickness of a low-conductive metallic layer, 

covering the top and bottom walls of cavity, is conditioned by following two factors: 
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1. The network analyzer ZVB14 provides spectral distribution in the range of         . 

The resonance frequency is determined roughly by the geometrical parameters of 

the cavity cross-section:      
 

  
√    , which depends on the thickness of the 

inner layer   and structure height  . Having a bunch in a structure imposes a lower 

limit on its height (      ). Also with the height increase, the impedance decreases, 

so the height should be near to its lower limit. For a structure with        height, 

the thickness of the coating should be about          to have a resonance 

frequency in          range, given by the measuring device. 

2. For the double-layer parallel plates the condition of resonance           is 

derived in chapter 2. Assuming that for the resonator the condition should be 

approximately the same, the low conducting material is chosen to have           ⁄  

conductivity for a layer with        thickness. 

As a result, germanium (Ge) crystal plates with sizes                  

     with conductivity             [98] and the relative dielectric constant      , 

were selected. Measurements were carried out for three different heights:       , 

       and        (         ,           and          , respectively). 

For the above-given vertical apertures and the Ge layer thickness, the skin depth at 

resonant frequency   is larger than the Ge layer thickness by factor of 3 (     ). The 

predicted resonant frequencies of the corresponding two parallel plates lie in the X-Band 

region between         . 

 3.4.1 Comparison with flat two-layer structure 

The measured resonant frequencies of the test cavity with laminated horizontal 

walls have been compared with the ones of the corresponding two-dimensional two-layer 

structure (outer layer is assumed as a perfect conductor) with inner      Ge layers. 

The longitudinal impedance of two parallel infinite laminated plates is derived in the 

second chapter of the dissertation. For an ultrarelativistic particle moving parallel with the 

plates along geometrical axis of the structure with perfectly conducting outer and low 
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conducting inner metallic layers, the longitudinal impedance can be presented as (Eq. 2.15, 

Eq. 2.33, Eq. 2.43 and Eq. 2.44) 

   
  

    ∫
  (     )  (   )

    

 

  
     (3.18) 

where 

      (  )  (  )     (  )  (  )

   (        )  (  )  (  )  
   

 
  (  )  (  )

 (3.19) 

with      ⁄ ,     ⁄  longitudinal wavenumber and 

  √     (    )          (3.20) 

Figure 3.2 presents the longitudinal impedance curves for such parallel laminated 

plates with           and      vertical apertures. The distances between the plates and 

material of the inner layers (germanium) are the same as in the tested cavities. The 

dashed lines indicate the measured main resonant frequencies of the corresponding 

copper cavities with laminated top and bottom walls. 

 

Figure 3.2: The longitudinal impedance of perfect conductor-Ge infinite parallel plates (solid 

lines) and measured resonant frequencies of copper cavity with Ge inner layers at the top and 

bottom walls (dashed lines). The Ge layer thickness is     , the vertical apertures are 

          and     . 



- 65 - 
 

Figure 3.2 shows that there is a good agreement between measured and calculated 

resonant frequencies. The relative difference in resonant frequency is       for     , 

      for      and     for      aperture cavities. The difference is caused mainly due to 

the limited volume of the cavity: the presence of highly conductive sidewalls. The presence 

of additional bursts is the result of the display of modal structure of the test cavity. Their 

contribution is weakened by the distance decrease between plates. Thus, by decreasing 

the height of cavity, its resonant characteristics approach to the characteristics of a flat 

structure consisting of two identical two-layer parallel plates. 

 3.4.2 Comparison with the theoretical results of IHLCC resonator 

Resonant frequencies of the cavity with outer perfectly conducting walls and inner 

germanium layers at the top and bottom walls can be obtained from Eq. 3.11. 

Experimentally fixed resonances (Figure 3.5) can be identified as concrete solutions 

(modes) of dispersion relations given by Eq. 3.11. Choosing the required mode (     ) the 

main resonance frequencies can be obtained for our IHLCC cavity with ideally conductive 

walls. Table 3.3 shows the comparison of experimentally observed resonance frequencies 

of the test cavity (“Experiment” in table) and analytically calculated resonances of cavity 

with outer perfectly conducting walls (“Calculated” in table). 

Aperture 

2 

Experiment 

4 

5 

Calculated Rel. dif. 

     

 

          

 

          

 

      

               

 

          

 

      

     

 

         

 

          

 

    

Table 3.3: The main resonances obtained experimentally and calculated for a cavity with 

perfectly conducting walls and inner Ge layers at the top and bottom walls. 

0.251 

0.339 

0.754 

1.001 

1.257 

1.508 

1.760 

As can be seen from Table 3.3, there is a good agreement between the measured 

and calculated results. The relative differences between the calculated and measured 

frequencies (“Rel. dif.” in table) are below    . 

As it was noted earlier (see section 3.2), free electromagnetic waves formed in the 

resonator form standing waves, which can be represented as the superimposition of two 

oppositely directed traveling waves: incident on the front wall of the resonator and going in 
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the opposite direction (see Eq.3.13). The phase velocities of these waves are equal in 

absolute value and opposite in sign (since they propagate in opposite directions):     

   ( )   ⁄  with   
 

 
 √  

    
    

 ;    and    are real numbers determined by the 

indices m and n and    is determined by the equations (3.10) and is a set of complex 

numbers. Thus, k is a complex number, the real part of which determines a discrete series 

of eigenfrequencies of the resonator, and its imaginary part, caused by the finite 

conductivity of the inner layers covering the inside walls, determines the finite Q of the 

resonator at its eigen frequencies. Determining k from the equations (3.10), we can obtain 

the dependence of the phase velocity of the partial traveling waves in the cavity, 

depending on the frequency. As noted earlier, the exact equality of the phase velocity of 

the partial wave in the resonator with the speed of light is unlikely. Investigations of the 

equation solutions (3.10) show that in the frequency range 0 - 14 GHz with the 

corresponding cavity parameters, only equation      (3.10d) give solutions for slow 

partial waves. The corresponding graphs are shown in Figure 3.3. 

   

Figure 3.3: The phase velocities of the partial waves in the resonator for modes        (solutions of 

equation     ) for    ,      ,            ;        (left),        (middle),        (right). 

Each of the graphs shows two sequences (discrete curves) of phase velocities of 

the modes:        and         with monotonically decreasing phase velocities. On all three 

graphs, a discrete curve depicting a sequence of modes         intersects the 

synchronization line     ⁄   . The second discrete curve containing the phase velocities 

of the modes        is located above the line     ⁄   , gradually approaching it as the 

frequency increases and intersecting with the first line. In the first and second cases 

(for         and         ) the measured fundamental resonance frequency 

corresponds to the intersection point of two discrete lines adjacent to the synchronization 
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line and is calculated (for two – dimensional planar case) close to the intersection point of 

the first curve and line of synchronization. In the third case, the situation is reversed: the 

measured fundamental resonance frequency corresponds to the intersection point of the 

first curve and line of synchronization.  

It is obvious, that in all three cases, the main resonance is formed by several modes 

with close frequencies and close phase velocities: modes                      

                              for       ,                                                             for 

         and                                                            for      . 

3.5 Summary 

This chapter is a logical follow-up of the study of high frequency single-mode 

accelerating structures with laminated metallic walls (flat and cylindrical) [66, 75, 89, 99].  

A theoretical model of a rectangular cavity with horizontal double layer metallic 

walls is created and electro-dynamic properties of the model are studied. The model with 

sufficient accuracy displays a test device and enables to clearly interpret the measurement 

results. Extreme frequencies on the experimental curves have been correlated with the 

respective modes of resonator model. The experimental results are also compared with 

the theoretical ones for two infinite parallel plates. A good agreement between them 

stimulates the experimental study of beam radiation and acceleration in laminated 

structures. The corresponding experimental program at AREAL test facility is foreseen. 
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Chapter 4: Electron bunch compression in single-mode 

structures 

4.1 Introduction 

The formation and acceleration of ultrashort electron bunches is an important issue 

for generation of coherent radiation in THz and Infrared regions, driving the free electron 

lasers (FEL) and direct applications for ultrafast electron diffraction [17-19, 100-102]. 

Length of bunches generated in RF guns is limited due to technical characteristics 

of photocathode and lasers. So for having sub-ps bunches one needs to shorten ps 

bunches generated in RF gun. There are several methods for obtaining sub-ps bunches, 

e.g. magnetic chicanes are used for high energy beams shortening [41], velocity and 

ballistic bunching are for low energy beams [42-45]. For all these methods one needs to 

have an energy modulated beam. 

It is well known that the relativistic charge, moving along the structure, interacts with 

the surrounding environment and excites the electromagnetic field known as wakefield 

[52-54]. Structures are usually disk, plasma or dielectric loaded channels that drive the 

corresponding wakefield accelerator (WFA) concepts, the performance of which can be 

improved by using the asymmetric driving beam to achieve high transformer ratio [61, 

103]. For the charge distribution the wakefield acts back to bunch particles producing an 

energy modulation within the bunch by longitudinal wake potential. The form of 

longitudinal wake potential depends both on the bunch charge distribution and the 

surrounding structure [52]. Although for Gaussian bunch the energy modulation is driven 

by the bunch head-tail energy exchange, for rectangular and parabolic bunch shapes the 

energy modulation at high frequency can be obtained. 

To have an energy modulation, disc and dielectric loaded structures are used. 

These kind of structures have high order modes excited by a charge when it passes the 

structure, which leads to energy storage in that parasitic modes and beam instabilities [51-

62]. To avoid such effects, one needs a single-mode structure. In this chapter wakefield 

induced bunch energy modulation during bunch interaction with the single-mode 
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structures is studied. As a single mode structure, cold plasma and recently proposed 

internally coated metallic tube (ICMT) are considered [63-66]. In cold plasma purely sine-

like wakefields without damping are generated, while in ICMT, wakefields are sine-like 

with damping factor [66]. 

The direct application of the holding integral for bunch rectangular or parabolic 

shape and point wake potential leads to energy modulation within the bunch at the excited 

mode frequency. To obtain sub-   bunches, a structure with excited frequency higher 

than     is needed. In cold plasma and ICMT, for appropriate parameters, the excited 

mode is within sub-    to     frequency region. 

For comparatively low energy bunches wakefield generated energy modulation 

causes velocity modulation and for proper ballistic distance it leads to density modulation 

or microbunching. To have that effect in proper distance, energy modulation in a bunch 

after the structure should be greater than several    , which can be achieved by 

              bunches. Electron bunches with        charge and        energy are 

observed, which correspond to usual values of modern linear accelerators [88]. 

4.2 Wakefields and Impedances 

A relativistic charge  , passing throw a structure interacts with it. Due to this 

interaction the particle radiates electromagnetic fields, known as wakefields, which then 

can act to the test charge  . From the causality principle, wakefields generated by an 

ultrarelativistic driving charge should vanish in front of it [52, 53]. The longitudinal 

component of the wakefield produces energy gain (or loss) of the test particle, while the 

transverse component produces the transverse kick of the test particle. 
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Figure 4.1: Driving   and test   charge moving in a structure. 

The longitudinal wake function (point wake potential) is the integrated longitudinal 

Lorentz force excited in a structure by a point charge   experienced by the test particle 

traveling on an   distance behind it [52] 

  (      )   
 

 
∫   (         

   

 
)  

 

  
    (4.1) 

where    is the longitudinal component of excited electric field,   is a transverse offset of 

test particle,    is a transverse offset of source particle and   is the speed of light in 

vacuum (Figure 4.1). Here     corresponds to the distance behind the driving point 

charge,     to the position of the charge and     to the distance in front of the charge. 

The transverse wake function is defined as an integrated transverse Lorentz force 

acting on a test particle 

  (      )   
 

 
∫ (     ) (         

   

 
)  

 

  
  (4.2) 

For a longitudinal distributed  ( ) driving bunch, the wake potentials are defined as 

an integrated longitudinal and transverse Lorentz forces excited by a bunch at the 

position of the test particle traveling on an   distance behind it. Here distance   is 

measured from the center of driving bunch. The longitudinal wake potential could be 

obtained from the wake functions using the convolution integral 
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  ( )  ∫   (    ) ( )    
 

  
    (4.3)  

here integration is from    to  , because there is no field in front of driving bunch. 

The total energy loss of the driving charge in a structure due to its radiation is 

proportional to the square of the charge 

                (4.4) 

The proportionality factor       is a longitudinal loss factor and can be presented by 

wake potentials 

      ∫   ( ) ( )  
 

  
    (4.5) 

The wake potential is a function of time, while Fourier transformation of the wake 

potential gives formation in frequency domain and is called the impedance [52, 53] 
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   (4.6) 

4.3 Ballistic bunching 

Traveling in the structure bunch particles gain (loss) energy due to interaction with 

wakefields generated by themselves and particles in front of them. Ballistic bunching 

method of studying microbunching and bunch compression is used. In ballistic method it is 

assumed that in structure the charge is rigid and only energy modulations occur. The 

energy modulation leads to the velocity change of particles in the structure and for non-

ultrarelativistic bunch charge density redistribution occurs in drift space after the structure 

(Figure 4.2). For appropriate initial bunch energy and energy spread after the structure, 

bunches with several    length can be formed.  
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Figure 4.2: Geometry of ballistic bunching (blue line illustrates the wakefield). 

After bunch passes the structure, the energy gain (loss) of  -th particle, with initial    

coordinate, is determined by: 

  (  )      (  )       (4.7) 

where   is the charge of test particle,   is the total charge of a source bunch,   (  ) is the 

wake potential in a structure and   is the structure length. 

Velocity of  -th particle on the entrance of drift space can be presented as 

 (  )  √  (
     

  (  )
)
 

     (4.8) 

where       is a particle rest energy and   (  )       (  ) is an energy of  -th particle 

after the structure. Here cold bunch approximation is assumed, which means that there is 

no energy spread in the initial bunch. Having a velocity of each particle at the end of the 

structure, the coordinate      of  -th particle after passing        distance in a drift space can 

be calculated by 

                     (  
 (  )

  
)   (4.9) 
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where    is the initial coordinate of  -th particle,    √  (
     

  
)
 

 is the bunch initial 

velocity,  (  )  is the velocity of  -th particle after passing the structure. Having the 

coordinate of each particle in a bunch after a drift space, one can obtain the bunch shape. 

Numerical simulations are done for observing wakefield effects on various line 

charge distributions. The bunch is presented as an ensemble of   particles that 

experience the energy deviations due to longitudinal wakefield. For simulations       

particles have been used. 

4.4 Energy modulation, bunch compression and microbunching in cold 

neutral plasma 

Bunch charge density modulation in infinite cold neutral plasma is studied via 

ballistic bunching method. It is assumed that the temperature of electrons is much higher 

than the one of ions (cold plasma). Under this assumption plasma can be considered as a 

medium with       
     macroscopic dielectric constant, where the plasma frequency 

is            √     , with    being the plasma electron density (in      units) [63]. 

The wake function of the relativistic point charge, passing the cold neutral plasma, is given 

by [63, 64] 

  ( )     ( )        (   )   (4.10) 

where  ( )  is the Heaviside step function,    
  

 ⁄  is the wave number,       is the 

longitudinal loss factor of plasma channel. 
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a 

 

b 

 

Figure 4.3: Point charge wake function in cold neutral plasma (           √      and 

         
  

 
   ) (left) and Gaussian bunch wake potential (right). 

Numerical simulations of bunch compression and microbunching have been 

performed for the driving bunch with        charge and        initial energy. 

Wake potential generated by a Gaussian bunch in plasma channel can be obtained 

by Eq. 4.2: 

  ( )  
 

√   
∫   (    ) 

 
  

      
 

  
   (4.11) 

Figure 4.3.b presents the wake potential of the Gaussian charge distribution with 

       rms bunch length in plasma channel with    
  

  ⁄           plasma frequency 

(wavelength          ). 

It can be seen that the wake potential is decelerating at the bunch head (   ) and 

accelerating at its tail (   ). This leads to bunch compression till some critical drift space 

distance, after which particles with coordinates     overtake particles with coordinates 

   . For distances longer than the critical distance, the bunch starts to expand and 

debunching process begins. From Figure 4.3.b it can be seen that the central part (    ) 

of the bunch is affected by a focusing wake, while the bunch tail is affected by a 

decelerating wake. 

Compressed bunch shape at various drift space distances after     plasma channel 

is shown in Figure 4.4. The dashed line represents the initial Gaussian bunch distribution. 
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It can be seen, that till       drift space length, the bunch is compressing, after which it 

starts to expand. On       drift space length the rms length of the bunch central part, that 

contains      of the particles, is      . 

a 

 

b 

 

c 

 

d 

 

Figure 4.4: Line charge distribution after bunch passes        distance in drift space 

 )             , b)             , c)           , d)             . 

To find the maximum compression, rms length dependence on distance is 

calculated. The rms length of the Gaussian bunch      (central part) and       particles 

dependence on bunch travel distance in drift space is shown in Figure 4.5. As it was 

mentioned, the bunch tail is affected by defocusing wakefield. This defocused part 

artificially increases rms length of a whole bunch and it always stays above      . For 

     bunch particles, maximum bunch compression is reached at     distance (bunch 

rms length is        ) after which the debunching process starts. 
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Figure 4.5: The Gaussian bunch longitudinal rms length for      (left) and       (right) versus 

drift distance. 

To have a microbunching, one needs a wakefield with several times smaller wave 

length than the bunch length. High frequency fields generated by Gaussian distribution 

are very low because of exponential damping factor in distribution. While for Gaussian 

bunch it is not possible to have a microbunching in appropriate distances, for some non-

Gaussian distributed bunches it is possible. 

For the rectangular uniform charge distribution the wake potential in plasma 

channel produces bunch energy modulation at the excited mode wavelength. 

Rectangular uniform line charge distribution is in the form of 

 ( )  {   
 

  
      | |   

           | |    
     (4.12) 

and the rms length of the bunch is given by   
 

√ 
. 

Wake potential of such a bunch can be derived from Eq. 4.2 

  ( )  ∫   (  (    ))  (  )    
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   (  (   ))      | |   

     

  
   (   )    (   )     

  (4.13) 
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Figure 4.6 shows the wake potential generated by a rectangular uniform distributed 

bunch of         rms length (     total length) in a plasma channel with        

(          ) excited mode wavelength. 

 

Figure 4.6: Uniform bunch wake potential. 

The energy modulation at the wakefield excited mode frequency leads to the charge 

density modulation as the beam travels in free space. 

Charge density modulation at various drift space distances after       plasma 

channel is shown in Figure 4.7. As it can be seen, the density modulation leads to the 

formation of three microbunches. 
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a 

 

b 

 

c 

 

d 

 

Figure 4.7: Line charge distribution after passing        distance in a drift space 

 )             , b)             , c)             , d)           . 

The best bunching is at the       drift space distance, where the initial rectangular 

bunch is transformed into three microbunches with       charge and       full-width at 

half maximum (FWHM). After that distance debunching process starts (Figure 4.7.d). 

Parabolic line charge distribution is taken in the form of 

 ( )  {   
 

   
(     )      | |   

                               | |    
   (4.14) 

and rms length of the bunch is determined by   
 

√ 
. 

The longitudinal wake potential of parabolic charge can be derived from Eq. 1.2 
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      (4.15) 

The wake potential for parabolic charge distribution of         rms length (     

full length) is shown in Figure 4.8. The dashed line represents bunch shape. To satisfy the 

microbunching criterion a plasma channel with        (           ) excited mode 

wavelength is taken. 

 

Figure 4.8: Parabolic bunch wake potential. 

The energy modulation of particles is observed with linear ramp of the average 

energy deviation. 

Figure 4.9 shows the parabolic charge density modulation at various drift space 

distances after     plasma channel length. The density modulation leads to microbunching 

and initial bunch transforms into three microbunches. 
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Figure 4.9: Line charge distribution after passing        distance in a drift space 

 )           , b)           , c)           , d)           . 

The best bunching is observed on a     drift space length, where microbunches 

with       charge       length (FWHM) are formed. It can be seen that at     drift space 

length, debunching of all three microbunches occurs. 

4.5 Energy modulation, bunch compression and microbunching in internally 

coated metallic tube 

Energy and charge density modulation of Gaussian, rectangular uniform and 

parabolic charge distributions in ICMT are observed. The geometry of ICMT is shown in 

Figure 4.10. 
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Figure 4.10: Geometry of the ICMT. 

In a high frequency range, for a thin, low conductivity inner layer and infinite thick, 

perfectly conducting outer layer the ICMT is a single-mode structure with    
 

  
√ 

  ⁄  

resonant frequency, where   is the inner radii of a layer and   is its thickness. 

Wake function generated in ICMT by an ultrarelativistic point charge moving along 

the structure axis can be presented as [66]: 

  ( )   
   

   
    [   (   )  

 

  
   (   )]  (4.17) 

where,    √  
    ,    

  

 
   and   damping factor is a function of layer thickness 

and conductivity. 

For non-ultrarelativistic particle (      ), the longitudinal wake function calculated 

in [104] is used. Wake functions of a point charge with various energies are shown in 

Figure 4.11. 
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Figure 4.11: Wake functions of a point charge with gamma factor   

a)     , b)     , c)     , d)     . 

Matching the inner radii of the internal cover and its thickness, one can obtain a 

resonant frequency in     region in the ICMT. 

Numerical simulations are performed to determine the bunch shape after drift space 

for a driving bunch charge of          with           initial energy. The inner 

diameter of a structure is       , electric conductivity of the first layer is     
 

 
, thickness 

of the first layer is     . Excited mode frequency in ICMT with these parameters is 

approximately    
 

  
√           , which corresponds to        wavelength. Point 

wake function of such a structure is shown in Figure 4.11.b. 
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Figure 4.12 presents the wake potential of the Gaussian charge distribution with 

       rms length (the dashed line shows bunch shape). 

 

Figure 4.12:        Gaussian bunch wake potential. 

The wake potential is decelerating at the bunch head (   ) and accelerating at its 

tail (   ). This energy modulation can lead to bunch compression for appropriate drift 

space length. 

The compressed bunch shape at various drift space distances after     ICMT is 

shown in Figure 4.13. The dashed line presents the initial Gaussian bunch distribution. 

The bunch is compressing till about     drift space length after which the bunch tail 

passes its head and the bunch starts to expand. 
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d 

 

Figure 4.13: Line charge distribution at        drift space distances 

 )           , b)           , c)           , d)           . 

In ICMT, like in plasma, the Gaussian bunch is affected by a strong focusing field 

on its central part, while in its head and tail there is a weak field. Note that in ICMT there is 

no debunching field on the bunch tail. The rms lengths of      (central part) and       

particles versus bunch travel distance in drift space is shown in Figure 4.14. The best 

compression is reached at       drift space distance, where a bunch with       charge 

and         rms length is formed. 
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Figure 4.14: rms of     (left) and      (right) of particles in a bunch versus drift space 

distance. 

To have a microbunching process in a structure one needs a bunch several times 

longer than the excited wavelength (      ). This criterion is taken into account for 

studying microbunching of uniform rectangular and parabolic bunches. 

Microbunching of rectangular uniform charge distribution with         rms length 

(       total length) in ICMT is studied. Wake potential of the bunch is presented in 

Figure 4.15 (dashed line shows bunch shape). This wake potential generates an energy 

modulation within the bunch at excited mode wavelength. 

 

Figure 4.15: Uniform bunch wake potential. 

The excited energy modulation leads to charge density modulation while it travels in 

a free space. Figure 4.16 shows charge density modulations in various drift space 

distances after       ICMT. The initial uniform bunch is transformed into several 

microbunches. 
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Figure 4.16: Line charge distribution after passing        distance in a drift space 

 )           , b)           , c)           , d)           . 

The best bunching is on     drift space length, after which a debunching process 

starts. Full-width at half maximum (FWHM) of the first microbunch is     , which is a good 

length for generating THz radiation.       of total charge is concentrated in a full-width 

region of the first microbunch, and      in a three-full-width region. The full-width of the 

second microbunch is      .        of total charge is concentrated in a full-width region 

and        in three-full-width region. 

Wake potential of parabolic charge distribution with         rms length (       

total length) is presented in Figure 4.17 (the dashed line shows bunch shape). Bunch 

damping energy modulation with linear ramp of the average energy deviation is observed. 
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Figure 4.17: Parabolic bunch wake potential. 

Bunch shape change in various drift space lengths after     ICMT is shown in 

Figure 4.18. The initial parabolic bunch transforms into several microbunches. 

a

 

b

 

c

 

d

 

Figure 4.18: Line charge distribution after passing        distance in a drift space 

 )           , b)           , c)           , d)           . 
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The best bunching is on     drift space length. On that distance FWHM of the first 

microbunch is       .       of total charge is concentrated in a full-width region of the first 

microbunch, and       in a three-full-width region. FWHM of the second microbunch is 

    .        of total charge is concentrated in a full-width region and        in a three-full-

width region. 

4.6 Summary 

Energy and charge density modulations of relativistic electron bunch, after its 

interaction with cold plasma and ICMT, have been studied. The bunching and 

microbunching processes of cold, low energy (      ) electron bunches of Gaussian, 

rectangular and parabolic charge distributions are researched by ballistic method. It is 

shown, that the Gaussian bunch interaction with these structures leads to its compression. 

Bunch shape            ,      ,    

Gaussian                           ,              ,       

Table 4.1: Gaussian bunch parameters before and after interaction with plasma and ICMT. 

Table 4.1 shows Gaussian bunch compression after plasma channel and ICMT. In 

the table    is for bunch initial charge,    is for initial energy,    is the initial rms length,    

and    are compressed bunch rms length and charge for plasma channel and finally    

and    are rms length and charge for ICMT. 

In cold plasma, a Gaussian bunch with        rms length and        charge can 

be compressed by factor of 8, while in ICMT it can be compressed by factor of 12. For the 

rectangular and parabolic bunches, several times longer than the structure excited 

frequency, the microbunching process can be obtained. 

 Plasma ICMT 

Bunch shape        ,           ,      ,    

Rectangular           ,                  ,             ,      

Parabolic           ,                    ,            ,        

Table 4.2: Parameters of rectangular and parabolic bunches before and after interaction with 

plasma and ICMT. 
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Table 4.2 shows microbunching results for rectangular and parabolic bunches. In 

the table indexes   and   are for plasma channel and ICMT, respectively.    is for the 

bunch initial length (FWHM),   and   represent the lengths and charges of microbunches. 

It is shown that in cold plasma a uniform bunch with      total length (        rms) 

and        charge can be splitted into three microbunches with       FWHM length and 

      charge. Parabolic bunch with      full length (        rms) and        charge 

forms three microbunches of       full-width and       charges. The study of 

microbunching process of rectangular bunch in ICMT shows that it is possible to generate 

microbunches of      FWHM length with        charge and       FWHM length with 

        charge. Having an initial parabolic charge distribution, it is possible to generate 

microbunches of        FWHM length with        charge and      FWHM length with 

        charge. 
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Summary 

It is shown that in single-mode structures sub-ps bunches can be formed from 

longer ones. The sub-ps bunch formation is researched in plasma channels and internally 

coated metallic tubes. The ballistic bunching method is used in research. Bunch shape is 

numerically reconstructed. 

It is shown that two-layer structures with inner low conductivity materials are high 

frequency single-mode structures. The theory of flat two-layer structure is developed. It is 

shown that electrodynamic properties of the flat structure are similar to properties of the 

cylindrical one. Rectangular cavity with horizontal two-layer metallic walls is studied and 

correlation between modes (obtained experimentally and theoretically) is performed. 

The main results of the dissertation are as follows: 

 Matrix formalism has been developed which allows to couple point charge 

radiated electromagnetic fields in the inner and outer regions of multilayer 

parallel infinite plates. 

 Non-ultrarelativistic point charge excited electromagnetic fields in multilayer 

parallel infinite plates are analytically obtained. 

 Explicit expression of non-ultrarelativistic point charge radiation fields in two-

layer parallel infinite plates with unbounded external walls is analytically derived. 

Also point charge radiation fields in single-layer unbounded structures are 

derived as a special case of two-layer structure. 

 Longitudinal impedance and dispersion relations of symmetrical two-layer 

parallel infinite plates are derived. It is shown that for low-conductivity thin inner 

layer and high conductivity thick outer layer, the longitudinal impedance has a 

narrow-band resonance in high frequency region. 
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 The resonant frequency dependence of the parameters for two-layer parallel 

infinite plates is studied and resonance frequency dependence on structure 

parameters is empirically derived. 

 Longitudinal wakefields generated by a point charge traveling through the center 

of the two-layer parallel infinite plates, with outer perfectly conducting material, 

are calculated. The longitudinal wake potential is a quasi-periodic function with a 

period given by the resonant frequency as 
 

    
. 

 Resonance frequencies of a rectangular cavity with horizontal laminated walls 

are analytically obtained. 

 It is shown that for rectangular cavity with vertical dimensions much bigger then 

horizontal ones, the resonance frequencies are in a good agreement with 

frequencies of two-layer parallel infinite plates. 

 The measured resonances of copper cavity with horizontal walls, internally 

covered by germanium thin layer, are correlated with analytically obtained 

resonance modes of rectangular cavity. All resonances of the test cavity are in 

conformity with analytically obtained modes. 

 It is shown that for appropriate structure parameters the rectangular cavity with 

internally covered horizontal walls is a good candidate for bunch acceleration 

and sub-ps (micro) bunch generation. 

 Compression of Gaussian bunches and microbunching of rectangular and 

parabolic bunches is numerically studied in plasma channels and internally 

coated metallic structures, based on the ballistic bunching method. 

 It is shown that Gaussian distributed bunches with initial        rms length can 

be compressed to       and      rms length in plasma channel and ICMT, 

respectively. 
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 It is shown that bunches with       and      full length can be formed due to 

microbunching of parabolic bunches in plasma channel and ICMT, respectively. 

 It is shown that bunches with       and      full length can be formed due to 

microbunching of rectangular bunches in plasma channel and ICMT, 

respectively. 

The results of the study can be useful for the development of new accelerating 

structures for particle acceleration, monochromatic coherent radiation sources, ultrashort 

bunch generation. 
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