

Precision Laser Processing for Beam Shaping and Guiding Applications

Ultrafast Beams and Applications UBA-19 02-05 July, 2019

Presenter: Arsham Yeremyan

Photon Beams & Optics Group

Outline

Femtosecond laser processing and microfabrication

- Laser system and uFab station: specs and capabilities
- Advantages and potential applications

Beam shaping and guiding applications

- 2D and 3D direct laser writing on/in glass: waveguides, phase plates, diffraction gratings
- Potential and relevance for spatial-temporal (3D) beam shaping applications
- Other materials and techniques

Summary

Laser Driven Experimental Stations

uFAB Microfabrication Station

UBA-19 Workshop

uFAB Microfabrication Station

Laser System

Specifications and features

i i i i i i i i i i i i i i i i i i i	t-pulse	S-pulse	FHG	SHG*	THG*
Wavelength	1030 nm	1030 nm	258 nm	515 nm	343 nm
Pulse width	250 fs	400 fs—8 ps	400 fs—8 ps	400 fs—8 ps	1—8 ps
Rep. Rate	50 MHz	1Hz—100 kHz	1Hz—1 kHz	1Hz—100 kHz	1Hz—100 kHz
Energy/pulse	20 nJ	Up to 2 mJ	Up to 425 uJ	Up to 1mJ	

* Conversion implemented in DELTA uFab

IR and UV pulse-to-pulse energy stability ~0.5 %

uFAB Station

Operating Parameters

- Pulse duration: 400 fs -8 ps
 Repetition rate: 1 Hz -100 kHz
 Average power: up to 8 W
- •Pulse energy: up to 2 mJ (1030 nm) and 1 mJ (515 nm)
- •Wavelengths 1030 nm, 515 nm, 343 nm
- •Sample positioning accuracy: ±50 nm
- •Travel range: 100 x 100 mm (XY), 25 mm (Z)

Ultrashort-Pulse Laser Processing

Applications

Processing technique

Direct laser writing, micromachining, laser-assisted deposition, 2D patterning

Typical Applications

Micro- and nanoelectronics Semiconductor technology, etc

Bulk processing of transparent materials

Microfluidics networks, waveguides, labs-on-a-chip

2-photon polymerization, ablation

3D photonic crystals, MEMS biomedical

. . .

Ultrashort-pulse laser processing

Direct laser writing in/on glass

□ Laser-induced modifications

such as refractive index change (RIC)

- ❑ Nonlinear (multiphoton) absorption confined to the focal point region → high resolution in 3D
- Buried waveguides and other embedded components for integrated optics
- High-power applications due to the high damage threshold of glasses

Beam Shaping and Guiding Applications

Direct laser writing in BK7 glass

Energy dose defined as: $D=E_pR_p/Av \rightarrow D_{opt} \sim 2.4 \text{ [uJ/um^3]}$

- Optimal regimes for fabrication of "smooth" structures with negative RIC
- Large volumes can be processed in "layer-by-layer" mode
- RIC sign changes depending on the fabrication regime: complex behavior at high pulse energies

Beam Guiding Applications

Long waveguides inscribed in BK7 glass

Binary phase plate for laser beam shaping

Fabrication in/on glass for high-power applications

Binary phase plate for laser beam shaping

<u>π-shaper Design and Fabrication</u>

Binary phase plate for laser beam shaping

- Nearly the same uniformity in both cases
- Edge steepness lower in case II due to the lower refractive index contrast
- ✤ Scattering losses lower in case II: Efficiency >95 % at 633 nm
- Further studies of regimes are needed to improve quality and fabrication speed

Beam Shaping and Guiding Applications

More glass-based optical elements

Features:

- Glass provides high damage threshold (suitable for high power applications)
- Both surface and bulk processing; 2D and/or 3D writing
- Diffraction efficiency can be increased by fabrication of volume structures

Possible use for spatio-temporal (3D) shaping

Possible use for saptial-temporal (3D) shaping

Temporal Beam Shaping

Delay-line for pulse doubling

Temporal Beam Shaping

Two-bunch beam

Delay: $\Delta t=10 \text{ ps}$, Charge: $Q_{tot}=-60\pm3.5 \text{ pC}$

Temporal Beam Shaping

Multi-pulse beam / pulse stacking

C. W. Siders et al., Appl. Opt. 37, 5302 (1998)

M. Y. Sheverdin, Proc. PAC07, p. 533 (2007). (LLNL PC gun drive laser)

Other materials and techniques

Two-photon polymerization

Other materials and techniques

Surface patterning

ZnO, d=600 nm Al, d=200 nm

Applications

micro-contacts nano-film patterning Photon/electron beam apertures

Summary

- Ultrashort-pulse laser processing applied for fabrication of glass-based beam shaping and guiding elements
- Optimal processing regimes found for fabrication of large, nearly homogeneous structures inside BK7 glass
- □ Flipping of sign of RIC is observed in BK7: further studies are needed
- Buried waveguides and phase plates were fabricated in BK7 and fused silica
- Spatial beam shaping by using surface patterned and volume phase structures
- Possible applications and approaches for 3D beam shaping are discussed

Thank you

Optical Vortex Beams

