

Imaging Strain in Semiconductor Nanowires by Means of Coherent X-Ray Diffraction Imaging

A. Davtyan¹, V. Favre-Nicolin², R. B. Lewis³, H. Küpers³, L. Geelhaar³, D. Kriegner⁴, D. Bahrami¹, A. Al-Hassan¹, O. Loffeld¹, U. Pietsch¹

Faculty of Science and Engineering, University of Siegen, 57068 Siegen, Germany
2 ESRF- The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
3 Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, D-10117 Berlin, Germany
4 Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, D-01187 Dresden

Ultrafast Beams and Applications 02-05 July 2019, CANDLE, Armenia

Single particle imaging

ULTRAFAST COHERENT DIFFRACTION IMAGING WITH X-RAY FREE-ELECTRON LASERS

Simulation of radiation-induced Coulomb explosion of a small protein (lysozyme)

Schematic diagram : single-particle diffraction imaging experiment at an XFEL Three-dimensional diffraction data

H. N. Chapman et al. Proceedings of FEL 2006, BESSY, Berlin, Germany

Outline

- Motivation
- **III-V** Semiconductor nanowires
- Core-shell-shell nanowires

- Coherent X-Ray Diffraction Imaging
- Solving the CXDI for single wire
- Ptychography

Discussion

CXDI=Bragg Coherent X-Ray Diffraction Imaging

Introduction to GaAs NW

Nanowires: Novel Material-

Scanning Electron Microscopy image of a single nanowire

1nm = 0.0000001 cm

GaAs Nanowire Applications

Terahertz detectors Transistors <u>Nanolasers</u> Photovoltaics Photodetectors and sensors <u>Light emitting diodes</u>

Novel devices

Nature communications, 2014, 7, 3632

Nanoscale, 2015, 7, 20531

Motivation

Core-multi shell NW

Investigate the same NW via coherent x-ray diffraction imaging and ptychography

Characterizing single NW

ESRF, ID01 microfocusing beamline

Beam energy 8keV

Beam size ≈150x200nm

CXDI

Angular scan at certain hight along the NW growth axis

PTYCHOGRAPHY

Translate the NW via piezo motors along and perpendicular to growth direction

Single NW GaAs 333 reflection

Coherent X-ray diffraction: GaAs (111)

3D phase retrieval: GaAs 111

Ptychography: single detector images GaAs 111

Ptychography reconstructions

Ptychography and CXDI: NW1

Ptychography reconstruction: NW2

Discussion

We have demonstrated Methodical development of the coherent X-ray diffraction techniques for Imaging strained nanoheterostructures

Combination of CXDI and FEM

Observation of inhomogeneities in GaAs/InGaAs/GaAs core-shell-shell Nanowire cross section

Combination of CXDI and Ptychography

Characterization of inhomogeneities along the entire nanowire growth axis

Acknowledgements

