Overview of the REGAE Beamline Upgrade

Ultrafast Beams and Applications 2019

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

05K16GUB

Benno Zeitler CFEL, UHH

REGAE

- > projects & goals
 - > (time-resolved electron diffraction)
 - > external injection of electron bunches into laser-driven plasma wakefields
 - > linearization of the longitudinal phase space without higher harmonic field
 - > THz-based acceleration

- > REGAE beamline upgrade
 - > REGAE beamline
 - > laser transport beamline
 - > commissioning

REGAE — Relativistic Electron Gun for Atomic Exploration

Projects & Goals

REGAE — Relativistic Electron Gun for Atomic Exploration

Bundesministerium für Bildung und Ferschung

External Injection at REGAE: Facilities

External Injection at REGAE: Concept

* M. Titberidze, *Pilot Study of Synchronization* on a Femtosecond Scale between the Electron Gun REGAE and a Laser-Plasma Accelerator, PhD Thesis, University of Hamburg, 2016

External Injection at REGAE forms an ARD milestone

wakefield eSpec (mm)5 *************************

External Injection at REGAE: S2E(nd of Plasma) Simulation

Linearization of the Longitudinal Phase Space

- > ... without higher harmonic fields
 - > bunch length minimum limited by non-linearities
 - > typical approach: higher harmonic cavity
 - > new concept: stretcher mode
 - > no additional cavity required
- > promising simulation results for REGAE
 - > possible bunch length (well) below 1 fs
 - > energy spread compensation: $\Delta E/E < 10^{-5}$
- > REGAE: proof of principle experiment
 - > step 1: energy spread compensation
 - > step 2: phase space analysis using TDS

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

05K16GUB

Benno Zeitler,

Phase Space Linearization and External Injection of Electron Bunches into Laser-Driven Plasma Wakefields at REGAE, PhD thesis, University of Hamburg, 2016

THz-based Acceleration at REGAE

> use THz fields instead of RF for...

> acceleration: similar to external injection

> (almost) everything is there anyways!

> diagnostics: THz-based TDS

> resolution on fs scale (and better)

> synergy with linearization

> THz pulses created by REGAE gun laser

> pulse energy: ~200 nJ

> frequency: 270 GHz

> 3D printed THz cavities

Courtesy: F. Lemery, F. Mayet

REGAE Beamline Upgrade

REGAE Beamline Upgrade: Team

Ryan Stark*

Christian Werle*

Nick Guse

technical groups (DESY, UHH, MPSD)

Bundesministerium für Billung und Ferschung Klaus Flöttmann Hossein Delsim-Hashemi Max Hachmann

Benno Zeitler*

* group of Florian Grüner

REGAE Beamline Upgrade

Bundesminister für Billung and Ferschung

SCIENCE

Interaction Chamber: Inside Sancho Panza

Laser Transport Beamline

Laser Transport Beamline

REGAE Beamline Upgrade: Summary

> REGAE beamline

- > interaction chamber
- > differential pumping
- > transverse deflecting structure
- > beam arrival cavity
- > additional klystron & modulator

> laser transport beamline

- > connection to ANGUS vacuum system
- > final focusing chamber
- > in-coupling chamber
- > ANGUS beam in the tunnel
- > synchronization

First Shots: Knife Edge Scan

- > transverse bunch profile diagnostics
 > similar to wire scanner
 > small beam diameters < 10 µm
 > high quality edges
 > high precision movement
- > complementary diagnostics> transmitted signal
 - > scattered signal

First Shots: Knife Edge Scan

First Shots: Transverse Deflecting Structure

- > collaboration with CANDLE > parts machined at CANDLE > cavity brazed at DESY
- > design resolution: ~10 fs at 5 MeV > no klystron: amplifier driven > streaking voltage ~150 kV
- > measurements:
 - > Ryan Stark & Max Hachmann

First Shots: Transverse Deflecting Structure

courtesy: Ryan Stark

Conclusion

REGAE beamline upgrade completed > > commissioning in progress

projects >

- > external injection project
- > phase space linearization
- > (THz acceleration/diagnostics)
- > test bed for future injection experiments
 - components: BAC, hexapods, (Si-)mirrors, ...
 - concepts: synchronization, matching, electron-laser-overlap, in-coupling, differential pumping, THz, ...

0.8

Thank you for your attention

GEFORDERT VOM

Bundesministerium für Bildung und Forschung

05K16GUB

UΗ DESY Ĥ

02

