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Acceleration of non-relativistic particles in high frequency structures

Energy gain per rf period for a constant phase
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only in standing wave structures,
does not contribute

in(¢) = 27asin(¢)

mc2k

The normalized vector potential a =
the rf wavelength.

describes the longitudinal beam dynamics independent of

mc2

For @ > 1 a particles starting at rest reaches relativistic energies within one rf period.

For a < 1 phase slippage is significant. Efficient acceleration requires matching of the phase
velocity of the wave to the (increasing) velocity of the particle.
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The normalized vector potential shrinks with increasing frequency

...because the gradient is not increased as much as the wavelength decrease
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Synchronous acceleration in a tapered dielectric waveguide
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Synchronous acceleration in a tapered dielectric waveguide

average particle energy

1 ITWORKSE

The electron stays on a
constant phase and thus
gains continuously energy.

BUT:

The fields are nonlinear; not
due to the tapering but due to
the matching to velocities
below speed of light:
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Example: Energy gain in a tapered dielectric structure
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Synchronous acceleration in a tapered dielectric waveguide

z = 9.9900E-02 m

First order approximations:
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Particles at large radii see higher fields...
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Stable operation when slightly over-powered...
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Energy gain vs. start phase for different operation gradients

» structure I1s matched for
a gradient of 100 MV/m

> Initial energy 100 keV,
10 cm DLW

» broad phase
acceptance when the
gradient is somewhat
higher than the design
gradient
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.... strong (on-axis) bunch compression when slightly over-

powered
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End phase vs. start phase for different operation gradients
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Schematic layout of compact THz accelerator

Periodically Poled
Permanent Solenoids
PPPS

Solenoid
Compact RF Gun (elektromagentic)

Tapered DLW
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Compact RF Gun

design and construction by group of Franz Kaertner

» 3 GHz single cell cavity with
cathode tip and choke mode
filter
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» driven by a compact solid state
0 - - - amplifier (10 kW)

» high field (100 MV/m) on the
cathode but low end energy (150
— 200 keV)

Electric field (MV/m)

Choke filter
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Prototype of the Compact RF Gun
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Simulation results for the Compact Gun

» 150 fC bunch
» 200 keV energy gain

E MeV

» Negative phase
Injection - bunch
compression
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200 keV eneFéy gain...

or oY mm

» Transverse emittance:
0.1 mm mrad

0.1

T2

0.05

...less than 10 ym beam size

em courtesy Moien Fakhari

...25 uym bunch length....
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Simulation results Gun & DLW & Focusing
initial energy 200 keV, frequency of the DLW 300 GHz, matched gradient 100 MV/m, a = 0.03
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Inverse bunch length (top) and
transverse emittance (bottom)
as function of gradient and start
phase.

White contour lines show the
charge transmission.

Parameters for shortest bunch
length:

charge: 80 fC

bunch length: 730 nm
emittance: 158 nm
energy spread: 83 keV
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Bunching mechanism in standard and tapered structures

=F/E,,

n
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tail

compression decompression
V=V

start phase [degree]

» negative starting phase: tail gains

more energy than head the bunch
IS thus compressed; for positive
starting phases the bunch is
decompressed

particles starting below then =1
line move toward higher phase
(from left to right); particles
starting above the n = 1 move
toward lower phase (from right to
left)

fix points | and Il are not stable,
while fix point Il is stable
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Bunching mechanism in standard and tapered structures
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Beam dynamics near fix point Il

A first order Taylor expansion of the phase near the fix point yields the differential equation

A(pll + %A(pl + kOUV’)'/SBm§00|A<p -0

(simplified form for g = 1), with the solution
Ap(y) = Apg ,;_Oy [—C1J2 (1) + CY (k)]
C;, C, = constants

J», Y, = Bessel functions

Ag, = initial phase relative to fix point phase

Yo = Initial energy

The relevant parameters to describe the beam dynamics are: the initial energy y,, the
normalized vector potential @ and the ratio of gradient to matched gradient .
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Proof of relevant parameters
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End phase vs. start phase for
I """"""""""" 1 n=11,a=0.03,and E; = 100
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Phase offset vs. energy for different vector potentials

The phase swings over for too
low alpha (a¢ < 0.03), i.e. a bunch
IS compressed, decompressed
and compressed again.

For large alpha (a« = 0.27), the
damping due to the increased
gamma is too strong, the
compression is stopped too early
a = 0.13 is close to the aperiodic
limit.

n = const=1.1
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Simulation results Gun & DLW & Focusing
initial energy 200 keV, frequency of the DLW 75 GHz, matched gradient 100 MV/m

1.74

s ] ¢ 75GHZ, 100 MV/m: a = 0.12
g 0 % Parameters for shortest bunch
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Bunch length during the acceleration process
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Final bunch length
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