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Round Pipe with Dielectric Layer

Martin Briine Timm

Wake Fields of Short
Ultra-Relativistic Electron Bunches

or similar things (here: “artificial dielectric”)



Analytical and/or Numerical Models (by far not complete)

time domain, wake field codes

very powerful tools, in particular rz
with particles (if required), f.i. SASE effect

frequency domain, FEM

f.i.: Vlasov antenna

Stupakov: Using pipe with corrugated walls for a subterahertz free electron laser
Phys. Rev. Accel. Beams 18, 030709 (2015)

K; for z =0,

2xcos(w,z/c), for —s(1 —v,/v) <z<0,
w(s,z) = {

0, otherwise.

analytic approaches

geometry with symmetry of revolution, but not uniform in z-direction

geometry with symmetry of revolution and uniform in z-direction

Fourier method (in particular for steady state)
cavity-eigenmode-method (transient)



Fourier Method (geometry is uniform in z-direction)

curl-curl equation stimulating charge density
o 0 s(r-r,)
VxE —E=—— rt)=4A(z,t)——=
V xV x +'U€8t2 at,uJ ,0( ) ( ) 271,

2d Fourier transformation  f (k,, @) = j f (z,t)exp(—j (oot — kzz))dtdz
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(from continuity equation)

for symmetry of revolution and monopole modes
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has a simple solution for layered problems
but we need a 2d inverse Fourier transformation!



my example:

source “particle”

| A

test particle ®

the synchronous frequency is about 300 GHz
ds

2

reference field (for normalization) Kk, =
A

I

r
I, S

r-t
rl = 0.00045
r2 = 0.00055
eps r = 3.8
rs = 0.0002
re = 0.0001
beta = 0.99



special case: rigid bunches  A(z,t)=A1(z—vt)
1 ¢-= .
E,(z,t)= Ez(z—vt):gj'EZ (k)exp(—jk(z-vt))dk

itis reduced to a 1d impedance problem
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the function is imaginary (where it is finite)  E, (k)=)_A, % Jkk2 + rest(k)/
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time domain

Ez(z)zi E, (K)exp(— jkz) dk

3

E,(z<0)=>_A cos(k,z)+res(z)

v=l

but the oscillating tail is of
infinite length

Ez/k0 with 3 poles

with k, = p—
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Brillouin diagram and group velocity

rl = 0.00045
(for the first 4 monopole bands) r2 = 0.00055
eps r = 3.8
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%104
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Cavity-Eigenmode-Method

we use the modes of a closed resonator system

r

dynamic eigenmodes related to the 1t monopole passband

E,(r.zt)={

e E

r—vr

(r)sin(k,z)+e,E,, (r)cos(k,z)jcos(m,t)

Ev(r,z,t):{

—e E

r—vr

(r)cos(k,z)+e,E,, (r)sin(k, z)jcos(m,t)

with k, = v
L

JWd {0 D03d

PEC boundaries

PMC boundaries

what we need to know is @(k), E, =E, (r,k) and the transverse component E, (r,k)

this is just the solution of the waveguide problem with a)(k) the dispersion relation



field amplitudes E,(r,z,t)=E, (r,z)cos(o,t)

2
curl-curl equation V xVx E+yga—E = —g,u\]
ot? ot
s(r-r,)

current stimulation J(r,t)=qve,5(z—vt)

27T,

eigenmodes VxVxE, = usw’E,

the eigenmodes related to the 15t passband are some of these these modes,
but there are more passbands and there are static modes

the expansion into eigenmodes is based on the completeness of the mode

description
r Z, t Za

eigenmode ansatz in curl-curl equation



orthogonality of eigenmodes

1 ' with W the energy of mode v
= [¢E,E AV =W,5,, =LW/5, v gy
2 and W’ the energy per length

ODE for coefficient functions

d d _ 1
(WJra)fjav (t):_ﬁgv (t)  with g, (t)=§IEdeV

in particular
qv qv :
g, (t):7Evz(rs)cos(kvvt)CD(t) g, (t)=7EVZ (0)sin (k,vt)®(t)
a, . (t)= _q_ZV E,,(r)f. (Lo, kv a . (t)= _q_2V E,, (0)f, (t,a, k,v)
asin(at)—Dbsin(bt cos(at)—cos(bt
()~ 250D ()l n()
for PEC boundaries for PMC boundaries




finally

sk sin(o,t)+k, gsin(k, pct)

E,.(r,1,2,t)= 2 > A (r,r)—E - cos(k,z)Ak
&, @ 2
BEX
C
E, (1.1 zt)= 4p ZA»(rS,rt)kV,BCos(wvt)z_cos(kvmt)sin(kvz)Ak
g, @ 2
] -en)
c
with
p=vic /%(rs,n)=JO(KOVrs)JO(KoVn)(EV\ZAE?))
Ak:% : "
k =vAk Ko, = (%) —k;

two functions are needed to use this result: @, =@(k,) and E,(0)/ W,

(per pass-band)

PEC

PMC
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this is close to the group velocity (0.496¢)



closed cavity and mirror

fort<O

PEC boundariesandt> 0
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this charge is static; its field is curl-free; it is not seen by the fields of the 1%t pass-band



combining the results

PEC boundariesandt> 0

® O
V@ oy

® o
1
)

o

Mo

E— Epec +Epuc
2

the field (related to the 15t monopole band) shows the effect of a charge the was in
rest for t <0 and that is in uniform motion for t>0;
it does not see the static charge in rest
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E_/k

A E_/k

Comparison for the Steady State Regime

transient and

steady state for 1st band
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/K,

two bands

transient and steady state for 1st and 2nd band
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First and Second Passband in Transient Regime

0.5%E_ +E_; )k,
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Why is the “burst” much nicer for the 15t band than for the 2nd?



Brillouin diagram and group velocity

rl = 0.00045
(for the first 4 monopole bands) r2 = 0.00055
eps r = 3.8
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calculation with manipulated dispersion

diagram

CCCCC

o .mm...j

-IE, ()I

yes, the 2"d derivative of the dispersion affects the shape of the burst



Summary and Conclusion

a loss free layered waveguide was investigated
steady state part by Fourier method

transient part by Cavity-Eigenmode-Method
good agreement of the resonant parts

missing parts are the resiudum of the pole expansion (Fourier method) and the
contribution of divergent eigenmodes (CE-Method); both are easy to be calculated,
but | was not interested in that

the shape of the burst is defined by the dispersion function «(k) and the normalized
on-axis amplitude E,(k)/sqrt(W’(k))

in particular the Taylor coefficients are important for the shape:

o(K)=o(k )+ o/ (k )(k—k )+ 0" (k (K=K, )" +--

~ group velocity ~ derivative of vg






More Gymnastics

a, . .
——sin(a,t)+k, Asin(k, Act)
E,.(r,1,2,t)= 45 > A (r,r)—E - cos(k,z)Ak
27[80 & (K IB)Z
C (k, PEC
9/ cos(w,t)—cos(k,Act)
E, (.1, 2t)= Y A(r.r)k A 2 sin(k,z) Ak
7[80 a)v 2
j _(kV'B)
¢ PMC
for fct=z2>> A
neglect terms with fast oscillation in z, with s = fict — z
P sin((w(:)—kluw(:)sj ) ( Ksin(k
—EZS;EZC —>—4qﬂ A(K) ﬁw(k) / dk+g'gg Ak)—SIn(k)
7T
" o [ e

term 1, late transients

term 2, early transients



Term1lk0

z-3*ct [m]

-0.03 -0.025 -0.02 -0.015 -0.01 -0.005 0
Term2/k0
-0.03 -0.025 -0.02 -0.015 -0.01 -0.005 0
*
0.5 (EPEC+EPMC)Iko, (Term1+Term2)Ik0

exact

Term1+Term2
-0.03 -0.025 -0.02 -0.015 -0.01 -0.005 0

more gymnastic exercises:

extract singularities from
the integrals — modified
Term1 and Term2 without
early/late oscillation

forct=30 A



modified Terml/k0
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