Transient Wave in a Pipe with Dielectric Layer

Martin Dohlus, Yerevan, 3. July 2019

Round Pipe with Dielectric Layer

Martin Brüne Timm

or similar things (here: "artificial dielectric")

Analytical and/or Numerical Models (by far not complete)

time domain, wake field codes very powerful tools, in particular rz with particles (if required), f.i. SASE effect

frequency domain, FEM

f.i.: Vlasov antenna

Stupakov: Using pipe with corrugated walls for a subterahertz free electron laser Phys. Rev. Accel. Beams 18, 030709 (2015)

 $w(s,z) = \begin{cases} 2\kappa \cos(\omega_r z/c), & \text{for } -s(1-v_g/v) < z < 0, \\ \kappa, & \text{for } z = 0, \\ 0, & \text{otherwise.} \end{cases}$ (3)

analytic approaches

geometry with symmetry of revolution, but not uniform in z-direction

geometry with symmetry of revolution and uniform in z-direction

Fourier method (in particular for steady state) cavity-eigenmode-method (transient)

curl-curl equation

$$\nabla \times \nabla \times \mathbf{E} + \mu \varepsilon \frac{\partial^2}{\partial t^2} \mathbf{E} = -\frac{\partial}{\partial t} \mu \mathbf{J}$$
stimulating charge density
$$\rho(\mathbf{r}, t) = \lambda(z, t) \frac{\delta(r - r_s)}{2\pi r_s}$$

2d Fourier transformation
$$\tilde{f}(k_z, \omega) = \int f(z, t) \exp(-j(\omega t - k_z z)) dt dz$$

$$(\nabla_{\perp} - jk_z \mathbf{e}_z) \times (\nabla_{\perp} - jk_z \mathbf{e}_z) \times \tilde{\mathbf{E}} - \frac{\mu\varepsilon}{\omega^2} \tilde{\mathbf{E}} = -j\omega\mu\tilde{\mathbf{J}}$$

$$\tilde{\mathbf{J}} = \mathbf{e}_{z} \tilde{\lambda} (k_{z}, \omega) \frac{\omega}{k_{z}} \frac{\delta(r - r_{s})}{2\pi r_{s}}$$

(from continuity equation)

for symmetry of revolution and monopole modes

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\tilde{E}_z}{\partial r}\right) + \left(\mu\varepsilon\omega^2 - k_z^2\right)\tilde{E}_z = \frac{j\tilde{\rho}}{\varepsilon_0}\left(\frac{\omega^2}{c^2}\frac{1}{k_z} - k_z\right)$$

has a simple solution for layered problems but we need a 2d inverse Fourier transformation!

my example:

the synchronous frequency is about 300 GHz reference field (for normalization) $k_0 = \frac{q_s}{4\pi r_1^2}$

r1 = 0.00045 r2 = 0.00055 eps_r = 3.8 rs = 0.0002 rt = 0.0001 beta = 0.99 special case: rigid bunches $\lambda(z,t) = \lambda(z-vt)$ $E_z(z,t) = E_z(z-vt) = \frac{1}{2\pi} \int \tilde{E}_z(k) \exp(-jk(z-vt)) dk$

it is reduced to a **1d impedance** problem

time domain

$$E_{z}(z) = \frac{1}{2\pi} \int \tilde{E}_{z}(k) \exp(-jkz) dk$$
$$E_{z}(z<0) = \sum_{\nu=1}^{3} A_{\nu} \cos(k_{\nu}z) + res(z)$$

but the oscillating tail is of infinite length

Cavity-Eigenmode-Method

dynamic eigenmodes related to the 1st monopole passband

$$\mathbf{E}_{v}(r,z,t) = \left\{ \begin{array}{l} \mathbf{e}_{r}E_{vr}(r)\sin(k_{v}z) + \mathbf{e}_{z}E_{vz}(r)\cos(k_{v}z) \right\}\cos(\omega_{v}t) \\ \mathbf{E}_{v}(r,z,t) = \left\{ -\mathbf{e}_{r}E_{vr}(r)\cos(k_{v}z) + \mathbf{e}_{z}E_{vz}(r)\sin(k_{v}z) \right\}\cos(\omega_{v}t) \end{array} \right\} PEC \text{ boundaries} \\
 \text{PMC boundaries} \\
 \text{with } k_{v} = v\frac{\pi}{L}$$

what we need to know is $\omega(k)$, $E_z = E_z(r,k)$ and the transverse component $E_r(r,k)$

this is just the solution of the waveguide problem with $\omega(k)$ the dispersion relation

field amplitudes $\mathbf{E}_{v}(r, z, t) = \mathbf{E}_{v}(r, z) \cos(\omega_{v} t)$

curl-curl equation
$$\nabla \times \nabla \times \mathbf{E} + \mu \varepsilon \frac{\partial^2}{\partial t^2} \mathbf{E} = -\frac{\partial}{\partial t} \mu \mathbf{J}$$

current stimulation $\mathbf{J}(\mathbf{r},t) = qv \mathbf{e}_z \delta(z - vt) \frac{\delta(r - r_s)}{2\pi r_s}$

eigenmodes $\nabla \times \nabla \times \mathbf{E}_{\nu} = \mu \varepsilon \omega_{\nu}^{2} \mathbf{E}_{\nu}$

the eigenmodes related to the 1st passband are some of these these modes, but there are more passbands and there are static modes

the expansion into eigenmodes is based on the completeness of the mode description

$$\mathbf{E}(r,z,t) = \sum \alpha_{\nu}(t) \mathbf{E}_{\nu}(r,z)$$

eigenmode ansatz in curl-curl equation

$$\mu \varepsilon \sum \left(\omega_{\nu}^{2} + \frac{\partial^{2}}{\partial t^{2}} \right) \alpha_{\nu}(t) \mathbf{E}_{\nu}(\mathbf{r}) = -\frac{\partial}{\partial t} \mu \mathbf{J}$$

orthogonality of eigenmodes

$$\frac{1}{2}\int \varepsilon \mathbf{E}_{\nu} \mathbf{E}_{\mu} dV = W_{\nu} \delta_{\nu\mu} = L W_{\nu}' \delta_{\nu\mu} \qquad \text{with } W_{\nu} \text{ the energy of mode } \nu$$

and W'_{ν} the energy per length

ODE for coefficient functions

$$\left(\frac{d}{dt^2} + \omega_v^2\right) \alpha_v(t) = -\frac{d}{dt} g_v(t) \quad \text{with} \quad g_v(t) = \frac{1}{2} \int \mathbf{E}_v \mathbf{J} dV$$

in particular

$$g_{\nu,c}(t) = \frac{qv}{2} E_{\nu z}(r_s) \cos(k_{\nu}vt) \Phi(t) \qquad g_{\nu,s}(t) = \frac{qv}{2} E_{\nu z}(0) \sin(k_{\nu}vt) \Phi(t)$$

$$\alpha_{\nu,c}(t) = -\frac{qv}{2} E_{\nu z}(r_s) f_c(t, \omega_{\nu}, k_{\nu}v) \qquad a_{\nu,s}(t) = -\frac{qv}{2} E_{\nu z}(0) f_s(t, \omega_{\nu}, k_{\nu}v)$$

$$f_c(t, a, b) = \frac{a \sin(at) - b \sin(bt)}{a^2 - b^2} \qquad f_s(t, a, b) = -b \frac{\cos(at) - \cos(bt)}{a^2 - b^2}$$
for PEC boundaries for PMC boundaries

finally

$$E_{zc}(r_{s}, r_{t}, z, t) = \frac{q\beta}{2\pi\varepsilon_{0}} \sum A_{v}(r_{s}, r_{t}) \frac{-\frac{\omega_{v}}{c} \sin(\omega_{v}t) + k_{v}\beta \sin(k_{v}\beta ct)}{\left(\frac{\omega_{v}}{c}\right)^{2} - (k_{v}\beta)^{2}} \cos(k_{v}z)\Delta k$$

$$E_{zs}(r_{s}, r_{t}, z, t) = \frac{q\beta}{2\pi\varepsilon_{0}} \sum A_{v}(r_{s}, r_{t})k_{v}\beta \frac{\cos(\omega_{v}t) - \cos(k_{v}\beta ct)}{\left(\frac{\omega_{v}}{c}\right)^{2} - (k_{v}\beta)^{2}} \sin(k_{v}z)\Delta k$$

$$\frac{\left(\frac{\omega_{v}}{c}\right)^{2} - (k_{v}\beta)^{2}}{\left(\frac{\omega_{v}}{c}\right)^{2} - (k_{v}\beta)^{2}} \exp(k_{v}z)\Delta k$$

$$E_{zs}(r_{s}, r_{t}, z, t) = \frac{q\beta}{2\pi\varepsilon_{0}} \sum A_{v}(r_{s}, r_{t})k_{v}\beta \frac{\cos(\omega_{v}t) - \cos(k_{v}\beta ct)}{\left(\frac{\omega_{v}}{c}\right)^{2} - (k_{v}\beta)^{2}} \exp(k_{v}z)\Delta k$$

PMC

with

$$\beta = v/c \qquad A_{\nu}(r_s, r_t) = J_0(K_{0\nu}r_s)J_0(K_{0\nu}r_t)\frac{(E_{\nu z}(0))^2}{W_{\nu}'}$$
$$\Delta k = \frac{\pi}{L} \qquad K_{0\nu} = \sqrt{\left(\frac{\omega}{c}\right)^2 - k_{\nu}^2}$$

two functions are needed to use this result: $\omega_{\nu} = \omega(k_{\nu})$ and $E_{\nu z}(0)/\sqrt{W'_{\nu}}$ (per pass-band)

 $\omega_{v} = \omega(k_{v})$

 $E_{vz}(0)/\sqrt{W_v'}$

for 1st monopole band with r_1 = 0.45 mm, r_2 = 0.55 mm and ε_r = 3.8

for 1st monopole band with r_1 = 0.45 mm, r_2 = 0.55 mm and ε_r = 3.8

r1	=	0.00045	
r2	=	0.00055	
eps_r	=	3.8	
L	=	0.31416	•
c*t	=	0.031916	$\approx 30 \lambda$
beta	=	0.99	

this charge is static; its field is curl-free; it is not seen by the fields of the 1st pass-band

the field (related to the 1st monopole band) shows the effect of a charge the was in rest for t <0 and that is in uniform motion for t>0; it does not see the static charge in rest

r1	=	0.00045	
r2	=	0.00055	
eps_r	=	3.8	
L	=	0.31416	
c*t	=	0.031916 + n*lambda	several snapshots
beta	=	0.99	

Comparison for the Steady State Regime

two bands

First and Second Passband in Transient Regime

Why is the "burst" much nicer for the 1st band than for the 2nd?

calculation with manipulated dispersion diagram

yes, the 2nd derivative of the dispersion affects the shape of the burst

Summary and Conclusion

a loss free layered waveguide was investigated

steady state part by Fourier method

transient part by Cavity-Eigenmode-Method

good agreement of the resonant parts

missing parts are the resiudum of the pole expansion (Fourier method) and the contribution of divergent eigenmodes (CE-Method); both are easy to be calculated, but I was not interested in that

the shape of the burst is defined by the dispersion function $\omega(k)$ and the normalized on-axis amplitude $E_z(k)/\operatorname{sqrt}(W'(k))$

in particular the Taylor coefficients are important for the shape:

$$\omega(k) = \omega(k_r) + \omega'(k_r)(k - k_r) + \frac{1}{2}\omega''(k_r)(k - k_r)^2 + \cdots$$
~ group velocity
~ derivative of vg

More Gymnastics

$$E_{zc}(r_{s}, r_{t}, z, t) = \frac{q\beta}{2\pi\varepsilon_{0}} \sum A_{v}(r_{s}, r_{t}) \frac{-\frac{\omega_{v}}{c} \sin(\omega_{v}t) + k_{v}\beta \sin(k_{v}\beta ct)}{\left(\frac{\omega_{v}}{c}\right)^{2} - (k_{v}\beta)^{2}} \cos(k_{v}z)\Delta k$$

$$E_{zs}(r_{s}, r_{t}, z, t) = \frac{q\beta}{2\pi\varepsilon_{0}} \sum A_{v}(r_{s}, r_{t})k_{v}\beta \frac{\cos(\omega_{v}t) - \cos(k_{v}\beta ct)}{\left(\frac{\omega_{v}}{c}\right)^{2} - (k_{v}\beta)^{2}} \sin(k_{v}z)\Delta k$$

$$PEC$$

for $\beta ct \approx z >> \lambda$ neglect terms with fast oscillation in *z*, with $s = \beta ct - z$

term 1, late transients

term 2, early transients

more gymnastic exercises:

extract singularities from the integrals → modified Term1 and Term2 without early/late oscillation

for $ct \approx 30 \lambda$

