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Abstract

The resonant properties of the impedance of a
two-layer circular metal-dielectric waveguide are
investigated. Their dependence on the geometric and
electromagnetic parameters of the waveguide is
considered: The conditions of a single-mode nature of

the radiation field of a point particle and a Gaussian
bunch are established numerically.
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Introduction

* The main source of radiation dissipation in the metal-dielectric
waveguide is the finite conductivity of the metal wall and the
attenuation due to the losses of dielectric (due to imaginary part of
the dielectric constant of the internal dielectric coating). With an
idealized consideration of the outer wall as ideally conductive and in
the absence of loss in the dielectric, the movement of a particle in a
waveguide will not be accompanied by a loss of energy. The
impedance of the structure in this case contains only the imaginary
component. The equivalent circuit of such a process corresponds to a
parallel inductive-capacitive resonant oscillatory circuit without loss.

e The real model of the structure should take into account both
dielectric and metal losses.



2. Statement of the Problem
A metal waveguide with an internal dielectric coating is considered.

Metal & = & +j&

£2(w), 2 (w)
£1 ((U), ﬂl(ﬁ)) 0-2

__ Dielectric &, =1+ j——
EoW

&1, & - relative dielectric constant of layers

g, = 58 x 10° Q" 'm~1! - conductivity of copper (Cu)

e7=10¢&, =0, 0.1, 0.5 and 3

a, =2mm,d = a, — al, d = 200um and d = 2um

The cases of thick (— = 0.1) and thin (— = 0.001) dielectric coatings are
considered.



Longitudinal impedance, exact formulae

_ -1
* L) = {Zdilel + Zrey Biz2 = k1 — &0,
Y/ 28, U211 _
* Zoiel = J [1 - e, = &0 +J 01,2/ €W
. P € / 7
* Lyez = —J ane ,31 a,U, (Uz T gi ﬁi U1“) €1 = & t]&

* Uy = [h(B1a2)Ko(Bra1) — Ih(Bra1)Ko(Braz)
* Uy = 1(B1a2)Ko(Braq1) + Ih(Bra1) K1 (Braz)

Us = —Ip(B1a2)K1(B1a1) — 1 (B1a1)Ko(B1a2)
* Uy = L1(Bra1)K 1 (Braz) — I;(B1az) K1 (Braq)



Dispersion relations, exact expressions

. E1VoJo(Vo)W3+v1J1 (Vo)W1 | &€1V3 Hél)(&vz) 0
€1V o(Vo)Wa+v1J1 (Vo)W &2v4 Hil)(&vz)

e Hered = a,/aq, v, is the desired dimensionless transverse wavenumber in vacuum of the TM
mode with zero first index; v; and v, transverse wavenumbers of the same mode in the inner

layer and in the outer wall, respectively: v, , = \/kza% (81,2[11,2 — 1) +v§
« W) = Hél)(Vﬂ]o(dW) —]0(v1)Hél)(&v1)
e W, = —Hél) (vi)/q (&vl) + /o (vl)Hl(l)(&vl) for o, — oo:
« W3 = —Hl(l)(V1)]o(dV1) +]1(V1)H(§1)(07V1) e1Volo (Vo) W3 + v1J1 (vo)W; = 0
c W, = Hl(l)(V1)]1(dV1) —]1(V1)H1(1)(dv1)

Wake function: W), = [ Z,e’°dw



3.Longitudinal Impedance, a; = 2mm, d = 200um

* The next slide presents graphs of the longitudinal impedance of a
metal-dielectric tube with a thick (d = 200um) internal dielectric
coating with relatively small values of the imaginary component of

the dielectric constant (g,=0, 0.1, 0.5) of the internal coating.
e A separate graph presents the impedance for the case of a relatively
large (¢,=3) imaginary component.

* Impedances are characterized by multiple resonant frequencies. The
amplitudes of the impedances decrease with an increase of the
imaginary component of the dielectric constant.



3. Longitudinal Impedance, a; = 2mm, d = 200um
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4. Dispersion curves, aq = 2mm, d = 200um
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In the absence of attenuation £,=0 and at low attenuation &,=0.5, all resonant
frequencies correspond to slowly propagating waveguide modes, the phase velocities
of which are synchronous with the velocity of propagation of the particle and,
therefore, affect to the movement of the test particle.

The effect of higher resonant frequencies on the test particle can be countered by
studying the shape of the corresponding wake functions.
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5. Wake functions, a; = 2mm, d = 200um

* The next slide shows the distributions of longitudinal wake functions
for the following values of the imaginary component of the dielectric
constant: £,=0, 0.1 and 0.5.

For ££=O and 0.1, the effect of higher resonant frequencies is
significant throughout the presented maximal distance behind the
particle (s < 40mm).

When e£=0.5 their impact becomes insignificant already for s > 10mm.

For these distances, in this case, the wakefield becomes
monochromatic.
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6. Impacts of higher resonance frequencies

* The next two slides (9 and 10) show separately the contributions of
the first three resonant frequencies to the wake function for cases

£,=0 and &,=0.5.

* In the first case (no attenuation, £1=O), all three harmonics make a
significant contribution to the total wakefield function. The sum of
the three harmonics basically repeats the form of the full wake
function, except for the immediate vicinity of the particle.

* In the second case, the convergence of harmonics to the full wake
function is faster. Mainly the first two harmonics participate in the
formation of the wake function.
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6. Impacts of higher resonance frequencies, €;=O
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6. Impacts of higher resonance frequencies, 5120.5
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For relatively large
attenuation values in the
presence of multiple
resonances, only the
main resonance
frequency turns out to be
in phase with the particle
velocity. Phase velocities
corresponding to higher
harmonics turn out to be
greater than the speed of
light, i.e. rapidly
propagating. However, in
this case, the amplitude
of the wake function
decreases rapidly.
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8. Case of thin dielectric cover, d = 2um
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In this case, there is a single
resonant frequency. The
phase velocity of the
harmonic at this frequency
coincides with the velocity
of the particle. As a result,
the wakefield turns out to be
monochromatic even in the
immediate vicinity of the
particle.

The advantage of a small
thickness of the dielectric
layer is also in the weak
dependence of the wake
field on the attenuation in
the dielectric. The decrease
in the amplitude of the wake
function is mainly due to the
finite conductivity of the
outer wall.
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8. Case of thin dielectric cover, d = 2um

 For athinlossless (g = 0) inner dielectric layer with an ideally conducting outer wall, the
resonant frequency is determined by the expression

_c g 2
frez = 21 |e; —laqd

* The resonant frequency calculated using this formula for selected parameters gives

fres = 1.1254 THz, whereas the same frequency calculated for the copper wall using exact

formulas gives a slightly lower value f,.., = 1.1121 THz. The difference Af,., = 13.2 GHzZ is
due to the finite conductivity of the outer copper wall
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O. Transverse Impedance and Wake function. Thick inner cover
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Dispersion curve. Thick inner cover
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Dispersion curve. Thick inner cover
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Dispersion curve. Thin inner cover
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11. Case of Gaussian Bunch, rms length
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12. CONCLUSION

Studies have shown the possibility of optimal selection of the thickness and electromagnetic characteristics
of the internal dielectric coating. For monochromatization of particle radiation, an important role is played
the selection of the attenuation degree (selection of the optimal imaginary component of the dielectric
constant of the dielectric). In particular, at ;=10 and when the thickness of the inner layer is about 200 um
%that is, if the thickness is sufficiently ]Iarge), the dielectric attenuation index should exceed 0.5

tgd = 0.05). On the other hand, the comﬁlete elimination of the influence of higher resonant frequencies
can be avoided with attenuation greater than 3 (tgd = 0.3). However, in this case, the amplitude of the
wake function decreases rapidly.

The preferred alternative is to use a thin dielectric coating with small attenuation. In this case, the
equivalent circuit of the impedance of the structure is a parallel resonant oscillating circuit with the
frequency-dependent complex shunt impedance and the emission of a particle is monochromatic, even in
the immediate vicinity of it.

The advantage of a small thickness of the dielectric layer is also in the weak dependence of the wake field on
the attenuation in the dielectric. The decrease in the amplitude of the wake function is mainly due to the
finite conductivity of the outer wall.

Another advantage is the possibility of achieving high frequencies, since the resonant frequency is inversely
proportional to the square of the layer thickness.

No effect of dipole modes on the transverse beam dynamics in the case of a thin internal dielectric coating



Thank you!
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