THz generation and Ultrafast Electron Diffraction at PITZ

M. Krasilnikov, DESY, Zeuthen, Germany

02.07.2019, Ultrafast Beams and Applications 2019, CANDLE, Armenia

Photo Injector Test facility at DESY in Zeuthen (PITZ)

Main Goals:

- provide optimized electron sources (minimum emittance) for FLASH and European XFEL
- do general accelerator R&D

Research areas:

DESY.

- basic photo injector R&D
- specific R&D for FLASH & European XFEL (for current facilities and future upgrades → e.g. CW upgrade of European XFEL)
- application of high brightness electron beams + general accelerator R&D for novel acceleration techniques
 → applications like THz, plasma acceleration, UED, …

PITZ "engine": RF-Gun and Photocathode Laser

Highlights of the facility

- L-band (1.3 GHz) 1.6-cell copper cavity
- Ecath>~60MV/m → 7MeV/c e-beams
- 650us x 10Hz → up to 45 kW av. RF power
- Cs_2Te PC (QE~5-10%) \rightarrow up to 5nC/bunch
- LLRF control for amp&phase stability
- Solenoids for emittance compensation

Photocathode laser(s) (UV)

Default laser system

(Max-Born-Institute, Berlin)

Gaussian:

THz at PITZ

IR/THz SASE source for pump-probe experiments @E-XFEL

PITZ-like accelerator can enable high power, tunable, synchronized IR/THz radiation

IR/THz Options at PITZ: High-gain THz SASE FEL

Case studies of generating THz radiation by PITZ electron beam

THz SASE FEL at PITZ

SASE FEL simulations assuming:

- Helical undulator with period length of 40 mm
- Electron beam with 15 MeV/c momentum, 4 nC bunch charge, ~2 mm rms bunch length

Preliminary conclusions:

- Transverse normalized emittance ε_n has almost no impact on saturation power
- Beam **peak current** (charge) → most impact

THz SASE FEL: Simulations for λ_{rad} = 100 µm (3 THz)

Options to improve THz radiation stability

Pre-bunching to improve CEP stability of SASE → "Seeding"

- Photocathode laser pulse temporal modulation
- Using IR laser, modulator and BC for E or δE modulations
- Using CDR from short seeding bunch
- Using corrugated structures
- Using Dielectric Lined Waveguides DLW (first experiments)

E-beam current profile without (blue trace) with DLW (red trace), λ =1.03 mm; The peaks are consistent with the wavelength of the structure 3.3 ps. 0.8 $\widehat{\operatorname{mits}}$ 0.6 ~120 A $\overset{\rm larp}{\underbrace{}_{0.4}}$ current 0.2 ~60 A 0.0 10-15-10-50 515time (ps)

F. Lemery et al., Passive Ballistic Microbunching of Nonultrarelativistic Electron Bunches Using Electromagnetic Wakefields in Dielectric-Lined Waveguides, Phys. Rev. Lett., 122 044801 (2019)

Proof-of-principle experiment on THz SASE FEL at PITZ

Using LCLS-I undulators (available on loan from SLAC) → under implementation

Some Properties of the LCLS-I undulator

Properties	Details
Туре	planar hybrid (NdFeB)
K-value	3.585 (3.49)
Support diameter / length	30 cm / 3.4 m
Vacuum chamber size	11 mm x 5 mm
Period length	30 mm
Periods / a module	113 periods

Reference: LCLS conceptual design report, SLAC-0593, 2002.

 λ_{rad} ~100 μ m \rightarrow <Pz>=17.05MeV/c

Preliminary conclusions on LCLS-I undulators at PITZ:

- Might be not such extremely high performance as for the APPLE-II, but is clearly proper for the proof-of-principle experiment!
- 4 nC electron beam transport through the vacuum chamber needs efforts, but seems to be feasible.

Start-to-end simulations for proof-of-principle experiment at PITZ

PITZ main tunnel and tunnel annex for the LCLS-I undulator installation

- Radiation shielding is improved (based on FLUKA simulations of Zohrab Amirkhanyan, CANDLE)
- Preparation for operation permission for annex is ongoing

S2E simulations: from photocathode \rightarrow undulator \rightarrow THz SASE FEL

Main challenges:

- 4 nC (~200A) x 17.05MeV/c \rightarrow SC dominated beam
- ~30 m transport (incl. 1.5 m wall) \rightarrow LCLS-I undulator in the tunnel annex
- 3D field of the undulator
- Matching into the planar undulator (narrow vacuum chamber issue)

Tools:

- ASTRA
- SC-Optimizer
- GENESIS 1.3

Start-to-end simulation with flattop photocathode laser

Optimization of the photo-injector (~5m) + Design of transport line (~27m)

- For the photo-injector optimization
- Laser
 - Flattop longitudinally: 21.5 ps
 - Uniform and tunable transversely: < 5 mm
- Gun: highest gradient achievable: Ecath=60 MV/m
- Other tunable parameters: Gun phase, Booster phase, Solenoid current

$$\rho = \left[\frac{1}{16} \frac{I_{\text{peak}}}{I_A} \frac{K_0^2 [JJ]^2}{\gamma^3 \sigma_x^2 k_u^2}\right]^{1/3} \qquad \qquad \frac{\varepsilon_n}{\beta \gamma} \le \frac{\lambda_s}{4\pi} \to \varepsilon_n \le 200 \mu \text{m}$$

- Goal function: $F = f(\langle \varepsilon_n \rangle, \sigma_E^{\text{corr}})$
 - Beam momentum 17.05 MeV/c <= booster gradient
 - Minimizing emittance oscillation after the booster
 - Minimizing correlated energy spread $\operatorname{cor}_{E_k} = \langle zE_k \rangle / \sigma_z$ at the undulator
- Results: many solutions with different laser spot sizes

LCLS-I undulator field modeling

Using By(0,0,z) field profile measurements done on 02.10.2013 at SLAC for the undulator L143-112000-07 after the final tuning

$$B_{y}(x=0, y=0, z) = \sum_{n=0}^{\infty} \left\{ a_{n} \cos\left(\frac{2\pi nz}{N_{U}\lambda_{U}}\right) + b_{n} \sin\left(\frac{2\pi nz}{N_{U}\lambda_{U}}\right) \right\}$$

3D field map generation (to be used as external field map for ASTRA (static magnetic cavity), CST(Trk/PIC) and LW code):

$$B_{y}(x, y, z) = \sum_{n=1}^{N_{h} \cdot N_{U}} \left[\left\{ \tilde{a}_{n} \cos(k_{n}z) + \tilde{b}_{n} \sin(k_{n}z) \right\} \cdot \cosh(k_{n}y) \right]$$
$$B_{z}(x, y, z) = \sum_{n=1}^{N_{h} \cdot N_{U}} \left[\left\{ -\tilde{a}_{n} \sin(k_{n}z) + \tilde{b}_{n} \cos(k_{n}z) \right\} \cdot \sinh(k_{n}y) \right]$$

Trans. & long. phase spaces at undulator entrance 100 r 75 17.3

vacuum chamber of the undulator module

• Two quadrupole triplets to focus the beam when

Astra + SCO simulation

- passing through diagnostics sections
- Another two triplets to match the beam into the

Transport and matching of the beam to the undulator

z (m)

Start-to-end simulation with flattop photocathode laser

(mm mrad)

THz radiation generation

- Genesis 1.3 simulation
 - Beam from Astra simulation used as input
 - No transverse space charge effects
 - No waveguide effects

D=3.2 mm

600

500

 \hat{J}^{400}

ш₃₀₀,

200

100

Parameter	Value	Unit
Pulse energy	493.1±108.8	μJ
Peak power	52.7±11.8	MW
Centre wavelength	101.8±0.7	μm
Spectrum width	2.0±0.4	μm
Arrival time jitter	1.45	ps

Pulse energy vs peak current D-photocathode laser spot diameter

150 155 160 165 170 175 180 *I*_{peak} (A)

D=3.7 mm

Plans in the PITZ tunnel annex: PITZ4 – Phase 1 (PITHz)

Beam line upgrade towards proof-of-principle experiments on THz generation

Experimental studies with Gaussian photocathode laser pulses

High charge beam generation

- Laser distributions used for simulations
 - Flattop longitudinally: 21.5 ps
 - Uniform and tunable transversely: < 5 mm
- Actual laser distributions
 - Gaussian longitudinally: 6-7 ps FWHM
 - Gaussian truncated transversely: ~3 mm FWHM
- From the short (~6ps FWHM) Gaussian laser, it is possible to extract 4 nC bunch charge, but at the cost of strong saturation, which is difficult to model with Astra
- To suppress strong saturation, large BSA (4 mm) was used for bunch charge of 2.5 nC while maintaining high peak current

Emission curves for various BSA (laser spot) diameters

Experimental studies with Gaussian photocathode laser pulses

High charge beam characterization

- At reduced bunch charge of **2.5 nC**, the beam has been characterized after acceleration & transportation
 - Laser: Gaussian longitudinally with FWHM of 6-7 ps and Gaussian truncated transversely with FWHM of ~3 mm
 - Gun: maximum accelerating gradient and MMMG phase => 6.6 MeV/c
 - Booster: MMMG -20 degree, gradient tuned => 17.05 MeV/c

Parameter	Meas.	Simul.	Unit
Laser FWHM	6.2	6	ps
Laser BSA	4	4	mm
Bunch charge	2.53±0.05	2.5	nC
Momentum	17.0	17	MeV/c
Peak current	153±0.5	156	А
xy emittance	3.90	4.14	mm mrad

Temporal bunch profile by TDS

Transverse phase spaces measured with slit-scan

Experimental studies with Gaussian laser pulses

Transport and matching of the beam

• Matching with two quadrupole triplets in the existing beamline (2.5 nC)

Procedure:

- 1, Phase space matching at EMSY1
- 2, Tuning the first triplet
- 3, Tuning the second triplet

All based on simulation results

Results:

1. The beam was matched at PST.Scr1

2. Currents of triplets were different from simulated ones.

beam size

RMS

 $\sim\sim\sim\sim\sim\sim$

1.5

5 2.0 Z(m) 2.5

3.0

3.5

1.0

0.5

0.0

First THz Radiation Generated at PITZ

Using CTR/CDR for THz generation (also for seeding?)

Coherent Transition / Diffraction Radiation (CTR/CDR) for $\lambda_{rad} \ge 100 \mu m$ (f $\le 3 THz$)

PITZ Highlights:

- Pulse train structure
- High charge feasibility (4 nC)
- Advanced photocathode laser shaping
- E-beam diagnostics
- Available tunnel annex
- . . .

PhD Thesis of P. Boonpornprasert "Investigations on the capabilities of THz production at the PITZ facility"

Current PITZ "boundary conditions":

- 22-25 MeV/c max
- No bunch compressor

• ...

1st experiments with **CTR/CDR THz generation**

Measured electron beam temporal profiles

THz Michelson interferometer measurements of CTR

Ultrafast Electron Diffraction at PITZ?

Beam simulation of UED test at PITZ

Optimized for solid state samples

- Simulations of two operation modes
 - Cathode laser 2 ps Gaussian, cathode with 0.5 mm.mrad/mm thermal emittance
 - No beam aperture is used

	Beam at sample	'Single shot' (irreversible UED)	'High coherence' (micro-nano UED)	Unit
	Energy (tunable)	~	-4	MeV
	Wavelength (tunable)	~	-0.3	pm
	Bunch length (FWHM)	<	50	fs
	Pulse rate (tunable)	10-	~10 ⁴	pulse/s
	Electron per pulse	~100 (10 ⁶ e⁻)	~0.1 (10 ³ e⁻)	fC/pulse
	Normalized emittance	20	0.2	nm.rad
	Beam rms size at sample	100	1	um
Т	ransverse coherence length		2	nm
	Source size at cathode	200	2	μm
	PITZ gun L-bar Bun velocit	nd booster picher for v bunching Q1/2/3/4	asma cell High1 mple Diffra	.Scr5
	<	~9 meter	dete	

Preparation of first static MeV electron diffraction test at PITZ

Collaboration between PITZ, Max-Born-Institute (MBI) and Fritz-Haber-Institute (FHI)

- DESY/PITZ: Installation, beam experiment, ...
- MBI: Sample substrate, Au sample, EMCCD + Lens, beam experiment, ...
- FHI: WS₂ sample, diffraction pattern analysis, ...

Preparation of first static MeV electron diffraction test at PITZ

+Actuator (PITZ)

Sample substrate

(MBI)

EMCCD camera (MBI)

EMCCD camera Installed at PITZ beamline

Courtesy H. Qian

PITZ 1st test vs FHI table-top electron diffractometer

Comparison of diffraction patterns

Comparison of beam parameters

	FHI typical	PITZ 1st test	
beam energy	<0.1	~4	MeV
wavelength	3.7	0.27	pm
coherence length	2.8	1.9	nm
beam size at sample	~0.1	~1	mm
beam pulse duration	60~100	~2000	fs
bunch charge	1~5e3	~2e6	e/bunch
beam repetition rate	<4	<6	10 ³ pulse/sec
time resolution	200-300	~400 (estim.)	fs

Compared to FHI instrument

- Emittance \rightarrow a factor of 15 (by beam aperture)
- Pulse length → a factor of 20 (short laser or bunch compression)
- \circ Time resolution \rightarrow to be demonstrated
- Higher voltage, higher bunch charge

Courtesy H. Qian

Conclusions

THz generation and UED at PITZ

- PITZ: developments on sources of high brightness electron beams and their applications
- PITZ = prototype of accelerator based IR/THz source for pump-probe experiments at the European XFEL
- High-gain THz SASE FEL at a PITZ-like accelerator
 → mJ THz pulses expected
- Proof-of-principle experiment on THz SASE FEL at PITZ:
 →LCLS-I undulator in the PITZ tunnel annex
 →S2E simulations for 4nC (~200A) → ~0.5mJ @ 100um
 →Experimental studies with Gaussian photocathode laser pulses
 → First THz Radiation Generated at PITZ
- Ultrafast Electron Diffraction (UED) at PITZ
 → first static MeV electron diffraction tests

Thank you!