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RADIATION DAMAGE TO DNA
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Yields of DNA Damage
produced in 1 cell by 1 Gray
~ 1,000 single strand breaks
~ 3,000 damaged bases

~ 25-40 double strand breaks
~ 190 multiply damaged sites

Introduction

The majority of cellular DNA lesions
caused by ionizing radiation (IR)
significantly differ from
those caused Dby endogenous
sources In their physical and
chemical properties.

The most Iimportant features of
radiation-induced DNA lesions are
their complexity and clustering.

DNA double-strand breaks (DSBSs)
are the most crucial DNA lesions
Introduced by the exposure of cells
to ionizing radiation (IR).
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BASIC TOOLS TO STUDY DNA
DOUBLE-STRAND BREAKS



Pulsed-field gel electrophoresis
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Advantages:
* high resolution In estimating the size of large DNA
fragments (up to 10 Mb).

e ability to estimate the fragments resulting from
clustered damage.

Disadvantages:

* very low sensitivity (> 200 DNA DSBs/cell);

« DNA fragmentation is estimated In the total cell
population without regard for its heterogeneity



DNA comet assay
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Advantages:
 single cell analysis

e relatively high sensitivity (~ 50-100 DNA DSBs/cell).

Disadvantages:
 specificity Is controversial.



TUNEL assay
(Terminal deoxynucleotidyl transferase dUTP nick end labeling)
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Advantages:
e single cell analysis

Disadvantages:
* low sensitivity (> 200 DNA DNA/ cell)



Immunocytochemical analysis

Fundamental Concepts Underpinning Fluorescence Microscopy
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Generation of DSBs
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Immunofluorescent labeling of proteins
involved in processing of a single DNA
double-strand break (DSB) makes possible
microscopic visualization of the DNA repair
structures as distinct spots or foci that
typically correspond to individual DSB. This
allows for very accurate and sensitive
indirect quantification of DNA DSBs and
their repair, thus facilitating examination of
mechanisms of the repair
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Osipov et al., 2015



Low dose effects 4 h after irradiation
DAPI p-ATM vH2AX Merged

30 min after irradiation
DAPI p-ATM TH2AX Merged
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Low doses of X-rays induce prolonged and ATM-independaent
peaersi ence of ywH2Z2ZAX foci in human gingival mesenchymal
stem cells
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Advantages:
e extremely high sensitivity (from a few
DSBs/cells);
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Figure 2. Differential immunocytochemical analvds of vH2AX fod in proliferating (Ki67(+)) and
resting (Ki67(-)) cells: (A) Changes in the vH2AX number in Ki67(+) and Ki(-) cells on 3-22 passages
(B} Comparative analysis of vH2AX in Ki67(+) and Ki(-} cells on early (3-8) vs. late (18-22) passages;
(D} Representative immunofluorescent microphotographs of MSC showing Kib? (green), vHZAX
(red) fod and their c-localization (vellow) at passage 5 and 20. Nudei were counterstained with
DAPL
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Advantages:

 extremely high sensitivity (from a few
DSBs/cells);

o differentiated analysis of heterogeneous
cell populations according to various
parameters (proliferation status, cell cycle
etc.);
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Advantages:

 extremely high sensitivity (from a few
DSBs/cells);

o differentiated analysis of heterogeneous
cell populations according to various
parameters (proliferation status, cell cycle
etc.);

e spatial distribution analysis;



Formation of RAD51 foci in diploid normal human fibroblasts during
continuous exposure to X-ray radiation at a dose-rate of 4.5 mGy/min.
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RADS51 foci were quantified using immunofluorescence microscopy. Two hundred cells
per data point were analyzed per experiment. Means calculated from three
independent experiments + standard errors are shown.
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Activation of homologous recombination DNA repair in human
skin fibroblasts continuously exposed to X-ray radiation
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Representative
microphotographs of
RAD51 and yH2AX
focl formed N
diploid normal
human  fibroblasts
upon exposure to
X-ray radiation at
a dose-rate of

4.5 mGy/min.
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Advantages:

 extremely high sensitivity (from a few
DSBs/cells);

o differentiated analysis of heterogeneous
cell populations according to various
parameters (proliferation status, cell cycle
etc.);

« DNA damage spatial distribution analysis;
 DNA repair mechanism studies.
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The main task of the project is analysis of radiobiological effects after
irradiation of human normal and tumor cells with subpicosecond pulses of
accelerated electron beams. The large scale systematic studies with
analysis of key molecular and cellular parameters (induction of DNA
damage and repair; cell cycle and proliferation arrest; cell death) are
planned. The results obtained will help to select the strategy of further
research of the possibility of application of ultrashort pulse irradiation for
the development of new technologies of radiation therapy of malignant
tumors in humans.

p-DNA PK

0Gy

Figure 1. Representative images of YH2AX and p-DNA-PK foci and their co-localization at 1h post-
irradiation in MRCS5 cell line after irradiation with ultrashort/ultrafast electron beam

Babayan et al., in preparation
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and attention!!!
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