Iranian Test Stand Electron Linear Accelerator

Sasan Ahmadiannamin On behalf of the Linac team Sasan.ahmadiannamini@gmail.com

School of Particles and Accelerators, Institute For Research in Fundamental Science (IPM), Tehran, Iran

2 July 2019

Contents

- 1. IPM Linac project
- 2. Commissioning activities
- 3. The project current status and the future plans

1. IPM Linac project

IPM Linac project

IPM Linac project

- > Parameters
 - ✓ Beam energy: 8 MeV
 - ✓ Beam current: 10 mA
 - ✓ Pulse length: 7 μ s
 - ✓ Repetition rate: 255 Hz
- ➢ Goals
 - \checkmark R & D in Accelerator physics
 - ✓ HR Training
 - ✓ Feasibility study
- Applications
 - ✓ Medical
 - ✓ Industrial
 - ✓ Injector of a larger facility.

IPM Linac project

- \succ The structure
 - Low energy injector
 Electron gun
 Steerer magnets
 - Matching solenoidPre-buncher
 - ✓ TW structures
 - ✓ Focusing solenoid
 - ✓ Diagnostics box
 - ✓ RF source
 - Generator
 - Amplifier (klystron & modulator)
 - Wave guide system

IPM Linac project

Iran's first Linac

 \checkmark Fully designed and constructed within the country.

- ➢ Human resource training: 25
 - ✓ Graduated M.Sc. Student: 14
 - ✓ Graduated PhD student: 4
 - ✓ Post-doctoral research fellow: 7

Publications: 51

- \checkmark In the international peer-viewed journals: 7
- \checkmark In the internal peer-viewed journals: 11
- ✓ In international conferences: 13
- ✓ In internal conferences: 20

Commissioning phases

- ➢ Low energy injector (40 keV)
- ➤ TW buncher (1.5 MeV)
- > 1^{st} acc. Tube (5 MeV)
- ➤ 2nd acc. Tube (8 MeV)

Simulation, Fabrication and installation of electron gun

Assembling and first days of operation of electron gun 6

Fixture and hollow conductors for pancake type solenoid around buncher cavity

Installation and measurement of solenoids on the beam line test bench

Installation and RF conditioning of buncher cavity

9

Commissioning activities

Detection of 1.5 MeV beam (Azar 96)

- \succ RF source
- ➢ Linac

Bremsstrahlung spectrum

1500 KW - Counts Per Channels

Beam profile measurement with YAG and ZnS Scintillators

Select Camera

Beam profile measurement and Emittance measurement with soll-scan method

Measured data

Gun energy = 10 keV

Calculated Beam Parameters at the gun exit: rms beam size = 3.0 ± 0.1 mm Derivetive of rms beam size = 5.3 ± 2.1 mrad Geometric emittance = 68.3 ± 4.4 mm-mrad

2995 -1997 -999 -

12

Solenoid magnet measurement in different currents for Sol-Scan measurement at the end of linac 13

Raw measured data

Interpolated measured data

Squared field integral (Measured)

Polishing and Ice cleaning Before assembling

Plunger Setup for frequency measurement and tuning

Plunger Setup, Frequency tuning and Beadpull Measurement

Frequency Spectrum and electric field profile

Control room and cavity conditioning for second phase with 4 MeV 18

Signel Analyz Marker Value 14.07500 Attenuator Value 79.1 dB Throshold 10. dB	of Power 2077.304 kw	Gauge #1 2.886E-7	Gauge #2 3.8276-7	RF drive Interlock Vac. Threshold (Bar) 1.0E-6	Set
	× = v		Pressure(Gau	ige 1)	
Star 1					
⁵ IVLt1Lt-	han and	and the second of the second o	Լիսափոյկտանից	dunder of the state of the stat	(
alue 1: 2:Pre					
1264 1264 1264					

User Interface

19

Gun Filament conditioning

Autotrans Voltage (V)	Filament Current (A)	Beam Current
112.5	1.10	16 nA
125	1.16	120 nA
137.5	1.25	2.3 μA
150	1.30	10 μA
162.5	1.36	90 μA
175	1.40	550 μA
187.5	1.44	4 mA

S-Parameters [Magnitude in dB]

Development of Cavity BPM for IPM e-Linac

S-Parameters [Magnitude in dB] ----- S1,1 S1,1:-14.93402 -2 -6 -8 -10 --12 --14 -16 -2970 2990 3010 3030 2950 Frequency / MHz

FRONT END ELECTRONIC FOR BPM AND PASSIVE PROTOTYPES

J.											
HARMO	NIC BALANCE · · · · ·	P_n lone .			VAR						• • • • • • •
1		FURIT Numeri	🛓 .		Filter_RFBPF	ten VAR	VAR • • • • • • • • • • •	Var VAR	👷 VAR		• • • • • • •
Harmonicealance HE1	•	2=50 Ohri	, <mark></mark> .	. 	FORFETO RW nacc=400 MHz	RFamp	Mer	Filter_FLFF1	Fiter (FBPF		• • • • • • • •
MaxOrdeir=3		Freq 11=Pi		im	BW 20db=800 MHz	NF_HFamp=0.0 Pidb_amn=20.4B	Vervieren 6. Ja	Fp=10 MHz Fs=20 MHz	FOFFI RAN ness=5 MHz		• • • • • • •
· Freq[1]=Fm1	MSub- free&pwi	Freq[2]=Fr	12	erm3 P1	Ripple=0.01_db	TOI RFamp=25 dB	TOT Mixer=20 dB	L=0.004 (db)	BW stoc=10 MHz		• • • • • • •
Freq[2]=IF	Fd=2:998 GHz	🛓 Freq(3)=Fr	.	um=s =91 Ohm	Degree=5	G amp=10			Ripple=0.001_db		• • • • • • • •
Freq[3]=Fd	NSUB Pilt=20-(l)	Freq(4)=Fl	t 👔-		lL=0.8_db		· · · · · · · · · · · · · · · · · · ·		. Degree=5		Tam · ·
Freq[4]=Fm2 Order[1]=1	HSUDI Ftilt=Fd	P[1]=polar P[2]=mlar	aomow(Pm1),U) domiow(Pm2),(1)			• • • • • • • • •	· · · · · · · · · · · · · · · · · · ·		L=0_db		Tem4
Order[2]=1	Er=3.55	PBI=colar	domiow(Pd10)			- <u>K</u>	· • • <mark> </mark> • • • • • • • •		. <u></u>		5 Num=4 -
Order[3]=1	Nu=1		dopptow(Ptilt),90)	WT delta :	RF-EPF			A FUF	: 🔽 F EPF	┉┉┉	Z=50.Qhm
. Order(4)=1	Cond=5.8E+7 Pm2=-7.5 (endio_P_bite.		<u>V</u>	2	7/	**W	1X	2		
	Hu=3.99+034 mm Fm1=1.881 Gi	Iz PORT2	DA	RRCoupler_rat .	BPF Chebys hev		MixerWithLO	LPF Chebyshev	EPF Chebyshev	IQ DemodTuned	🗄
	TanD=0.0027	12 0 17=40 Ohn	DA	RRCoupler1	BRF2	Amplifier2	• MXI • • • • • • • •	UPRI	- BPF1 - · · · ·	DEMOD1	
	Rough=0 mile	Fred 11=Fr	50 11 - 1 - 1 - 1 - 1 - 1 - 1	Jost="MGub1" Ica	Fcenter=FcRF	AMP2 \$21-decelor(C. eme(0)	ZRef=50 Qhm	Fpass=Fp	Foenter=FolF	Fnom=IF	Temp
	Bbase=	Freq[2]=Fi	12	ru ⊫50 Ohmiiii	BWpass=BW_pass	S11=0 S11=0	DesiredIF=RF minus LO	Ripple=0.01 dB	BW pass=BW_pass	Rout=50 Chm	S Num=5 ·
	Dpeaks=	Freq(3)=Fr		ata=0 mil· · · ·	Rippie=u.ui ab Rivetore:Riv ston	· S22=0· · · · · ·	Convean=oppdiar(Convean,C	/ FS100=FS Astro=20.8B	Ripple=UUT dB RMsfore:RW_stor		Z=50 Ohm
		Freq(4)=Fl	t		Actors:20 dB	S12=0		ronhurann	· Actor=28 dB		
		P[1]=polar P[7]=rolar	aomow(rm1),0) abasiow(Pas2),0)								🗄
		PB)=colar	domicim(1112),0) domicim(Pdk180)								
		P[4]=polar	domiow(Ptilt),270)								

PRACTICAL MEASUREMENT OF PICK-UP CAVITY AS A CURRENT DIAGNOSTIC

Pick-up and pre-buncher cavity

Experimental setup

Tested antenna

Internal structure of cavity with antenna

PRACTICAL MEASUREMENT OF PICK-UP CAVITY AS A CURRENT DIAGNOSTIC

The structure and placement of the plunger on the cavity

pre-buncher s-parameter

Vacuum measurement setup, gauge and LabView software output

PRACTICAL MEASUREMENT OF PICK-UP CAVITY AS A CURRENT DIAGNOSTIC

Experimental setup

for 10 and 20 electron volt beam energies

22

spectrum w/o beam

spectrum with beam

Faraday cup output oscilloscope

TWO TYPES OF STEERER MAGNETS AND HARP DETECTOR

THREE PART OF LINAC ASSEMBLY

- 1. ELECTRON GUN AND MATCHING SECTION
- 2. CAVITY AND SOLENOIDS
- 3. OUTPUT OF LINAC WITH SOLENOID MAGNET AND DIAGNOSTIC BO

WHOLE OF STRUCTURE (DIFFERENT VIEWS)25

Beam diagnostics instruments

Parameters to be measured and the energy range

- Current 1.
- Energy 2.
- Energy spread 3.
- **Transverse Profile** 4.
- 5. Beam size
- Derivative of the Beam size 6.
- 7. Emittance
- 8. Position
- 9.

Second phase of the Linac commissioning

Main characteristics of the second phase

- \checkmark Increasing of the beam energy from 1.5 MeV to around 4 MeV
- ✓ Increasing of the beam current from 0.1μ A to at least 10μ A
- ✓ The opportunity of direct measurement on the beam and hence the accelerator performance

> A unique facility in the country

- ✓ The first successful project on design and construction of linear accelerators
- \checkmark The access to a controllable and measurable electron beam of 4 MeV energy

Future plans

- > Short term
 - ✓ Completing the Linac commissioning
 - \rightarrow Reaching the maximum possible energy for the beam (~ 7 MeV)
- ➢ Long term
 - ✓ Moving towards High Power Electron Linacs
 - Extracting the maximum power for the beam (available RF power = 3.9 kW)
 - With the current electron gun

$$I = 1 \, mA \longrightarrow P_{peak} = 7kW \xrightarrow{Duty \ cycle \cong 0.002} P_{av} \cong 14W$$

• Replacing the electron gun

 $I = 100 \ mA \longrightarrow \begin{cases} P_{av} \sim 1.2 \ kW \\ E \sim 6 \ MeV \ (14\% \ \checkmark) \end{cases}$

Thanks for your attention!

Team Members

- 1. M. Lamehi Rachti
- 2. Hamed Shaker
- 3. Sh. Sanayeh
- 4. M. Shirshekan
- 5. S. Ahmadiannamin
- 6. F. Ghasemi
- 7. M. Khalvati
- 8. S. Haghtalab

Many Thanks to ILSF RF, Mechanic, Vacuum and Magnet Group