

AREAL RF Gun Model Refinement by Beam Trajectory Response

Tatevik Vardanyan

Content

- Introduction
- Problem description
- Method
- SUPERFISH simulation
- Astra simulation
- Expected experiment steps
- Summary

In most cases of result comparison for simulations and measurements there is discrepancy in main characteristics.

Possible reasons:

- Gun focusing effect (plug, cell deformation)
- Solenoid focusing
- Beam energy, beam charge
- Beamline ASTRA model & real coordinates

• ...

Goal – Refine gun model and minimize discrepancy between simulation and measurement

Gun focusing effect

• Change of plug location can correspondingly cause change of electromagnetic field on the cathode surface, hence gun focusing effect on the beam

• Gun cell deformation analogically causes field balance disturbance and change of gun focusing of the beam

Method

$$\begin{bmatrix} X \\ X' \end{bmatrix}_{Screen} = \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix} \begin{bmatrix} X \\ X' \end{bmatrix}_{Cathode}$$

Geometries of Gun and cathode

Ø78.66

SUPERFISH simulation results

Gun field maps for different geometrical changes

SUPERFISH results of gun field maps

Varying the plug location

- 0

-0 Plug

-0.5mm

-0.1mm

0.12

0.14

____0.1mm

Energy gain change due to field balance disturbance.

Radius of the 1st cell (mm)	E1/E2	Max Energy gain MeV
0.1	0.5127287135	4.47047353
0.04	0.7502934719	5.01460796
0.02	0.8710634993	5.28607501
0 (original)	1.0296691059	5.55893566
0	1.0216281467	5.51232951
-0.02	1.207928531	5.06743079
-0.04	1.4340937192	4.68386696

Plug position (mm)	E1/E2	Max Energy gain MeV
0.5	0.9082500665	5.21210612
0.1	1.0021641954	5.5284844
0 (original)	1.0296691059	5.55893566
0	1.0216281467	5.51232951
-0.1	1.0406096425	5.50183975
-0.5	1.075249721	5.37400512

Astra simulation results

Solenoid field is OFF

110 MV/m (Varying the radius of the first cell)

- The field balance (for M11=0) is changed by 15.5% when the phase of the gun is shifted by 1.5 degree due to cell deformation.
- The plug location (for M11=0) is changed by 0.02 mm when the phase of the gun is shifted by 1.5 degree.

110 MV/m (Varying the plug location)

Astra simulation results Sol on

110 MV/m (Varying the radius of the first cell

 The field balance (M11=5) is changed by 40% when the MaxB(1) of the solenoid is shifted by 0.01 T (4.4%)

7 6.5 ---0 6 - 0 Plug 5.5 M11 5 4.5 4 3.5 1.90E-01 1.95E-01 2.00E-01 2.05E-01 2.10E-01 2.15E-01 2.20E-01 2.25E-01 MaxB(1) [T]

110 MV/m (Varying the plug location)

 The plug location (for M11=5) is changed by 0.5 mm when the MaxB(1) of the solenoid is shifted by 0.008 T (3.5%).

Experimental setup

- Gun field amplitude: 110 MV/m
- Solenoid on, check MMMG phase
- Solenoid off, find the gun focusing phase
- Scan laser position on cathode, measure beam centroid movement on screen
- Using different gun field maps, fit simulation to experiment
 >by tuning cathode plug insertion in gun

➢by changing the field balance between 1st and 2nd cells

Summary

- SUPERFISH simulations for different plug locations and gun cell deformations, with cathode plug geometry included
- ASTRA simulations of beam trajectory response with different gun field maps for both Solenoid ON and OFF
- Trajectory response with solenoid ON is more sensitive to gun geometry changes (plug location, field balance)

Next steps

- To do measurements for trajectory response around gun focusing phases for both cases
- Fine adjustment of simulation model to experimental results

Thank you for attention