The Development of RF Structures & Diagnostic Tools for Ultrashort Bunches

Ultrafast Beams and Applications, 02-05 July 2019 CANDLE SRI, Armenia **Vahe Danielyan** Scientific Production Division

http://candle.am/products/

Introduction

- Historical review

TDC Al. Prototype

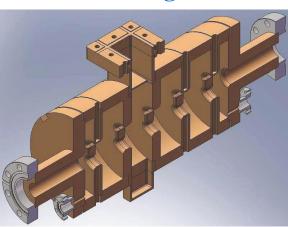
TDC Copper Cells

- Ongoing researches

S-Band A. Structure Prototype

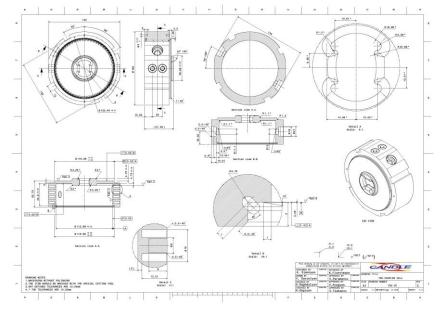
Quadrupole Magnets

- Future developments

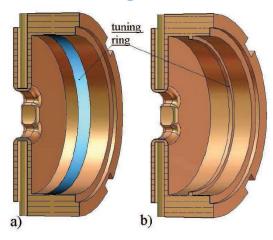


Channel 2 Channel 1

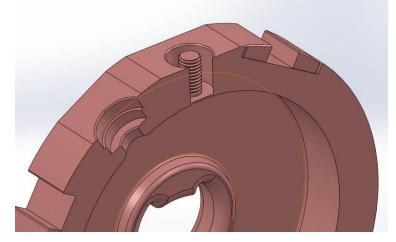
Magnets (Solenoid, quadrupole, Dipole & Corrector)


Design

Engineering Design & Technical Drawings

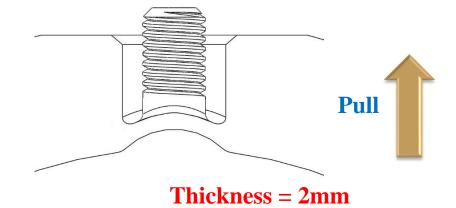


Main Requirements:


- Material Oxygen Free Copper
- Tolerances $\pm 20\mu$
- Surface Roughness Ra0.2µ
- Tuning Tools Push & Pull
- Machine without polishing

K. Floettmann, V. Paramonov, PRST-AB 17, 024001, 2014

Tuning Tools

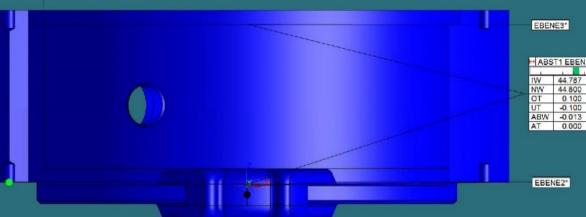


Push & Pull Technique

Push

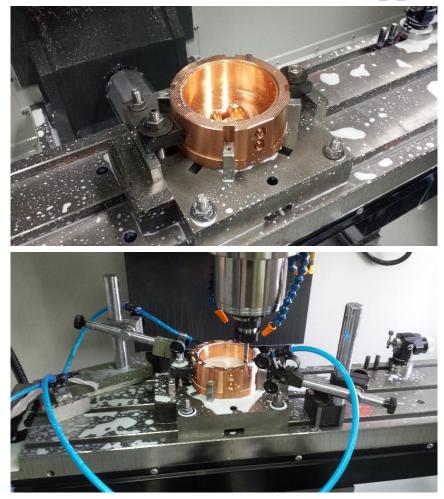
Push & Pull Technique

TDC Al. Prototype


Mechanical & RF Measurements at DESY

Produced at CANDLE November 2016

Coupler Cell	Design	Measured	Deviation
ID depth	44.8 mm	44.787 mm	-13 μ
ID	112.88mm	112.888 mm	+8μ



CNC Machine Accuracy <u>±10µ</u>

- Mechanical CMM Measurements in tolerances
- Measured Frequency 3001.9 MHz
- **RF** Measurements **ID** should be increased <u>110µ</u> 112.88 mm to 112.99 mm

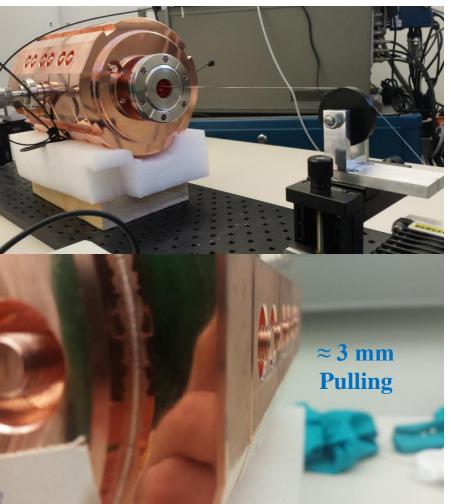
Page 5/17

TDC Copper Cells' Production

Produced at CANDLE September 2017

Final Production Processes of TDC at DESY

- Vacuum Brazing
- Leak Detection
- **RF Measurements**
- **RF** Tuning
- Leak Detection
- Cleaning
- Brazing cooling tubes
- Commissioning

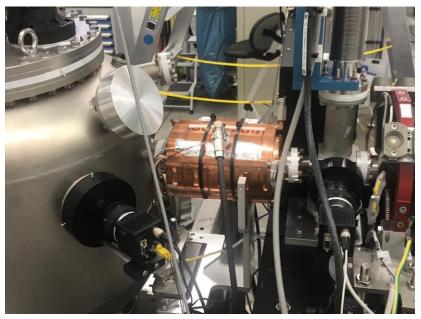


Page 7/17

TDC RF Tuning at DESY

Measurements

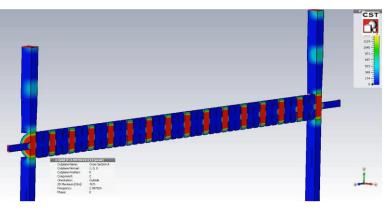
Deformed material around Tuning Studs

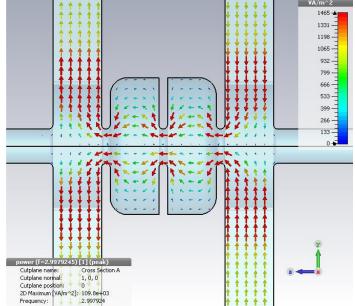


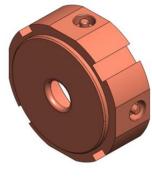
- Measured Frequency 3001.5 MHz (+3.5 MHz)
- Operating Frequency 2997,925 MHz
- No leaks after RF Tuning

Collaborating Team

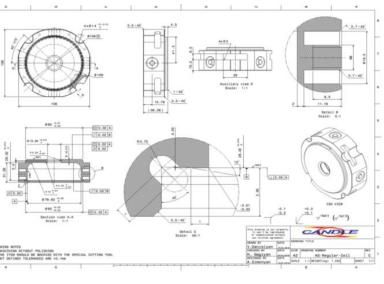
TDC On REGAE Machine



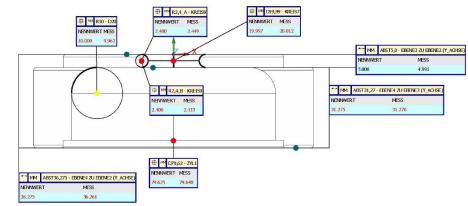

V. Paramonov, K. Floettmann, V. Danielyan, A. Simonyan, V. Tsakanov, Proceedings of RuPAC2018, WEPSB53, 2018


S-Band Accelerating Structure AREAL, CANDLE

Design


Engineering Design & Technical Drawings

Main Requirements:


- Material Oxygen Free Copper
- Tolerances $\pm 15\mu$
- Surface Roughness Ra0.2µ
- Tuning Tools Push & Pull
- Machine without polishing

S-Band TW Accelerating Cavity Design for AREAL Energy Upgrade, Andranik Tsakanian, 18/10/2016, CANDLE SRI

Page 10/17

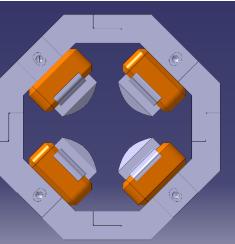
S-Band Accelerating Structure AREAL, CANDLE

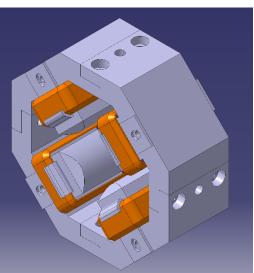
Mechanical Measurements at DESY

Repeatability Less Than <u>3 µ</u>

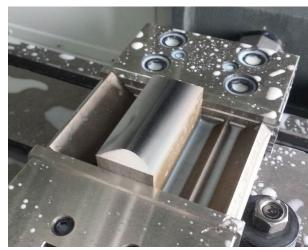
R. Cell №3	Design	Measured	Deviation
ID depth	31.275 mm	31.270 mm	- 5 μ
ID	79.625 mm	79.648 mm	+ 23 μ
Iris Diameter	19.997 mm	20.012 mm	+15 μ
R. Cell №5	Design	Measured	Deviation
R. Cell №5 ID depth	Design 31.275 mm	Measured 31.269 mm	Deviation - 6 μ

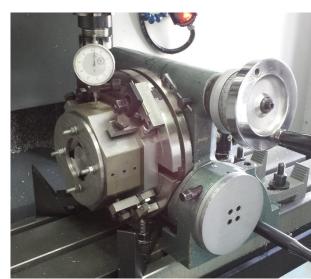
S-Band Accelerating Structure AREAL, CANDLE

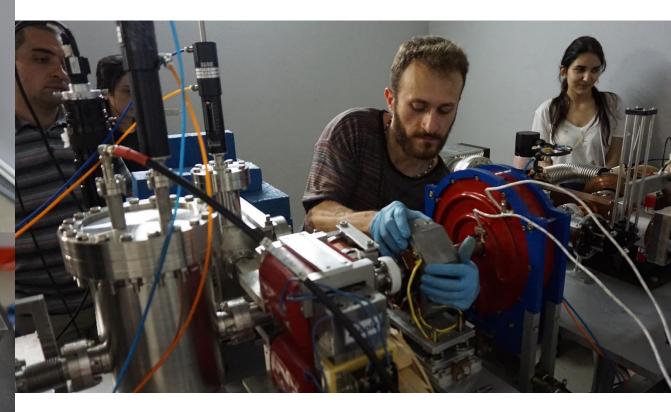



Quadrupole Magnets AREAL, CANDLE

Design Parameters


Parameters	
Doublet length	165 mm
Magnet length	60 mm
Magnet bore diameter	43 mm
Field gradient	0.6 T/m
Wire diameter	1 mm
Wire cross section	0.785 mm ²
Winding numbers	100
Max. voltage per Magnet	4.2 V
Maximal current	2.36 A


Engineering Design

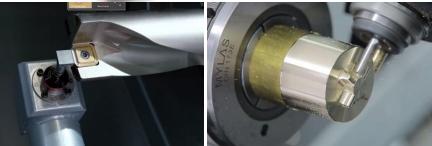

Fabrication

Quadrupole Magnets AREAL, CANDLE

Quadrupole Magnets AREAL, CANDLE

After Successful Prototyping 2 Quadrupoles are in Production Stage

New Projects (AREAL upgrade)


- Second S-Band Accelerating Structure
- 5 Quadrupole Magnets
- 2 Dipoles Magnets
- 4 Corrector Magnets
- Solenoid Magnets
- ≈ 15 Supporting Systems for New Girders

Page 15/17

Our Capabilities HAAS ST-10 CNC Turning Center

HAAS TM-1P CNC Vertical Milling Machine

- Max Cutting Diameter/ Length 356/406 mm
- Spindle Max Speed 6000 r/m;
- Positioning $\pm 5 \mu$
- Repeatability $\pm 2.5 \mu$

- Working area 762x305x406mm;
- Spindle Max speed 6000 r/m;
- Positioning $\pm 10 \mu$
- Repeatability $\pm 5 \mu$

Page 16/17

Thank you for Attention

