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Introduction 

In particle accelerator facilities charged particle beams are being controlled and 

manipulated by various types of magnets. Bending magnets, as well as corrector 

magnets are used for the beam guidance and steering. Beam focusing is realized by 

applying solenoid and several quadrupole magnets in doublet and triplet 

arrangements. Finally, light with specific properties will be produced through the 

periodic magnetic structure, the undulator. 

Solenoid magnets are used for focusing low energy particle beams. Unlike with 

optical lenses, the image is rotated with respect to the object. Since the focal length 

increases with the square of the momentum, a solenoid lens is effective only for 

small momenta. Iron cover of the solenoid provides a return path for the solenoid 

field, thus enhancing and concentrating the field inside the magnet gap which is seen 

by the particle beam. In contrast to the solenoid, the quadrupole magnet focuses the 

beam only in one plane. If it focuses the beam in the horizontal plane, then the beam 

is being defocused in the vertical plane and vice versa. 

Experimental tasks include: 1) Mapping of the axial magnetic field along the central 

axis of the solenoid magnet using HALL probes; 2) Measurement of the integral 

magnetic field multipoles  of the dipole and quadrupole magnets in the transverse 

plane by a rotating coil. It will be discussed how magnets are used to set up a 

magnet optics lattice at accelerators in general and at AREAL in particular.  

 

1  Mathematical fundamentals 

A simple expression, satisfying Laplace’s equation ∇2𝐹 = � 𝜕
𝜕𝑥2

+ 𝜕
𝜕𝑦2

� 𝐹 = 0, fully 

characterizing the two dimensional magnetic field in the absence of iron and current 

(in the air region) is  

  𝐹 = 𝑧𝑛 where 𝑧 = 𝑥 + 𝑖𝑦  is  the complex space coordinate.   

Taking the derivatives;   

𝜕𝐹
𝜕𝑥

= 𝜕𝐹
𝜕𝑧

𝑑𝑧
𝑑𝑥

= 𝑛𝑧𝑛−1 𝑑𝑧
𝑑𝑥

   But 𝑑𝑧
𝑑𝑥

= 1.  Therefore, 𝜕𝐹
𝜕𝑥

= 𝑛𝑧𝑛−1.   
𝜕2𝐹
𝜕𝑥2

= 𝜕�𝑛𝑧𝑛−1�
𝜕𝑧

𝑑𝑧
𝑑𝑥

= 𝑛(𝑛 − 1)𝑧𝑛−2.   
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𝜕𝐹
𝜕𝑦

= 𝜕𝐹
𝜕𝑧

𝑑𝑧
𝑑𝑦

= 𝑛𝑧𝑛−1 𝑑𝑧
𝑑𝑦

.    But 𝑑𝑧
𝑑𝑦

= 𝑖.  Therefore, 𝜕𝐹
𝜕𝑦

= 𝑛𝑧𝑛−1 𝑑𝑧
𝑑𝑦
𝑖.   

𝜕2𝐹
𝜕𝑦2

=
𝜕(𝑛𝑧𝑛−1)

𝜕𝑧
𝑑𝑧
𝑑𝑦

= 𝑛(𝑛 − 1)𝑧𝑛−2𝑖2 = −𝑛(𝑛 − 1)𝑧𝑛−2 

 Substituting ∇2𝐹 = 𝜕2𝐹
𝜕𝑥2

+ 𝜕2𝐹
𝜕𝑦2

= 𝑛(𝑛 − 1)𝑧𝑛−2 − 𝑛(𝑛 − 1)𝑧𝑛−2 = 0.   

 Therefore, 𝐹 = 𝑧𝑛 satisfies Laplace’s equation. Moreover, 𝐹 = 𝐶𝑛𝑧𝑛 and 𝐹 =
∑ 𝐶𝑛𝑧𝑛𝑁
𝑛=1 where, in general,𝐶𝑛 is a complex constant also satisfy Laplace’s equation.  

1.1 Multipole expansions 

In this section we denote the vertical coordinate by y instead of z because we want to 

keep the conventional notation z = x + iy for complex numbers.  

The length of modern accelerator magnets is usually much larger than their bore 

radius. The end field contribution is then rather small and the magnetic field has to a 

good approximation only transverse components. (This section relays heavily on the 

source [Rossbach, P. Schmüser, Basic course on accelerator optics,  DESY-M-93-

02.].) 

For two-dimensional fields one can apply the theory of analytic functions. From  

div B = 0 
 
it follows that a vector potential A exists such that   

B = rot A          (1.1) 
 
Because of the transversality of the field, the vector potential has only a component 

As in the longitudinal direction s. In vacuum, for example inside the beam pipe, we 

have furthermore (for static fields)  

 
rot B = 0 
 
This implies that B can also be written as the gradient of a scalar potential V:  

 

B = − grad V          (1.2) 
 
Combining both equations (1.1, 1.2) we get:  

s
x

AVB
x y

∂∂
= − =

∂ ∂
  s

y
AVB

y x
∂∂

= − = −
∂ ∂

     (1.3) 
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Now we define a complex potential function of z = x + iy  by           A (z) = As (x,y) + i 

V(x,y). 

The equations (1.3) are just the Cauchy-Riemann conditions for the real and 

imaginary part of an analytic function. So the complex potential is an analytic function 

and can be expanded in a power series 

    κn = λn + i µn     (1.4) 

 
with λn, µn real constants.  

From complex analysis we know that this series expansion converges for all z inside 

a circle   |z | < rc . The radius of convergence rc is the closest distance between the 

origin of the expansion and the iron yoke or the coil where the Eqs. (1.3) break down 

and (z) is no more analytic, see Fig. 1.1.  

   
Figure 1.1: The multipole expansion with respect to z = 0 is only valid inside the circle rc 
(radius of convergence). 

 

Cylindrical coordinate representation  

For superconducting magnets, it is practical to express the field in cylindrical 

coordinates (r,ϕ,s), see Fig. 1.2:  

x = r cosϕ        y = r sinϕ       zn = rn ·einϕ = rn(cos nϕ +i sin nϕ)   (1.5) 

( )
0

n
n

n
A z zκ

∞

=

= ∑

A
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Figure 1.2: Cylindrical coordinate system used in the multipole expansion. 

 
The scalar potential is given by the imaginary part of Eq. (1.4)  

V(r,ϕ) = (µn cos nϕ+ λn sin nϕ) rn      (1.6) 

Similarly, we get from the real part of Eq. (1.4)  

 

As(r,ϕ) = (λn cos nϕ− µn sin nϕ) rn      (1.7) 

Taking the gradient of −V(r,ϕ), we get the multipole expansion of the azimuthal and 

radial field components, respectively  

 

 

Br = −  n(µn cos nϕ+λn sin nϕ) rn−1 

 
Now it is convenient to define a `reference radius' r0 for the multipole expansion and 

to denote the magnitude of the main field component of the magnet in question by 

Bmain. A useful choice for r0 is the largest conceivable deviation of beam particles 

from the design orbit (25 mm in HERA, that is the inner radius of the beam pipe). 

Furthermore we introduce the ’normal’ multipole coefficients bn and the ‘skew’ 
coefficients an by 

  

 an = +       (1.8) 

 

0n

∞

=
∑

0n

∞

=
∑

( ) 1

1
cos( ) sin( )ϕ λ ϕ µ ϕ

ϕ

∞
−

=

∂
= − = − −

∂ ∑ n
n n

n

VB n n n r
r

1n

∞

=
∑

1
0

main

nn
n

nb r
B

λ −= − 1
0

main

nnn r
B

µ −
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Then the multipole expansions read (note that a0, b0 are set to zero as they don't 

contribute to the magnetic field)  

 

V (r,ϕ)  = −Bmain       (1.9) 

As (r,ϕ)  = −Bmain       (1.10) 
  

Bϕ (r,ϕ) = Bmain     (1.11) 

Br (r,ϕ)  = Bmain     (1.12) 

 
Remember that these multipole expansions are only valid within a circle of radius rc 

containing neither iron nor current! For an ideal 2n-pole magnet we have bn=1 and all 

other an,bn = 0. We call  

 
n = 1 Dipole 
n = 2 Quadrupole 
n = 3 Sextupole 
   

It is instructive to consider Bϕ + iBr :   

Bϕ + iBr = Bmain  

Bϕ + iBr = Bmain          (1.13) 

 
Thus  

(|B|)n =       (1.14) 

 
i.e. the magnitude of the 2n pole field component does not depend on the azimuth 

and scales with the (n−1)th power of r. Equation (1.14) also illustrates a simple 

interpretation of the fractional multipole field coefficients an,  bn : They are just the 

relative field contribution of the nth multipole to the main field at the reference radius 

0
1 0

cos sin 
n

n n

n

a b rr n n
n n r

ϕ ϕ
∞

=

  − +   
  

∑

0
1 0

cos sin 
n

n n

n

b a rr n n
n n r

ϕ ϕ
∞

=

  +   
  

∑

( )
1

1 0

cos sin 
n

n n
n

rb n a n
r

ϕ ϕ
−

∞

=

 
+  

 
∑

( )
1

1 0

cos sin 
n

n n
n

ra n b n
r

ϕ ϕ
−

∞

=

 
− +  

 
∑

( ) ( )
1

1 0

cos  sin cos  sin 
n

n n
n

r b n i n ia n i n
r

ϕ ϕ ϕ ϕ
−

∞

=

 
+ − +    

 
∑

1

1 0

( )
n

in
n n

n

r b ia e
r

ϕ

−
∞

=

 
− 

 
∑

( )2 2 1 2 2
main

0

( )n
r n n

n

rB B B a b
rϕ

−+ = +
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r0 . This is the reason why the coefficients λn,  µn have been normalized with Eqs. 

(1.8).  

Conventional accelerator magnets with iron pole shoes are limited to dipole fields of 

about 2 T and quadrupole gradients of about 20 T/m. Significantly higher values ( > 6 

T, > 100 T/m) are possible with superconducting magnets. In these magnets the field 

distribution is entirely determined by the conductor arrangement and the coils have to 

be built with extreme accuracy to keep field distortions below the required level of 

10−4. Figure 15a shows schematically the layout of a superconducting dipole.  

In iron-free magnets the field distribution generated by an azimuthal current 

distribution described by   is given by  

 

Ideally, the current as a function of the azimuthal angle ϕ should follow a cosϕ-

distribution to generate a pure dipole field and a cos2ϕ (cos3ϕ) distribution for a 

quadrupole (sextupole) field. Since these ideal distributions are technically difficult to 

realize one approximates them by an arrangement of current shells. The cylindrical 

coordinate representation is particularly useful for magnet design from current shells.  

Another application of the cylindrical coordinate representation is the technique of 

measurement of the multipole components with a coil rotating in the field: The nth 

Fourier component of the induced voltage is proportional to while its phase 

is related to an/bn.  

In a good dipole or quadrupole magnet the unwanted multipole coefficients a n, b n 

are typically a few 10−4 or less.  

Finally it is noted that within the cylindrical coordinate representation one easily 

understands which multipole components are forbidden if specific symmetry 

properties of the field are assumed. For instance, for a quadrupole with perfect 

constructional symmetry only odd harmonics of the 4-pole are allowed. Or, as 

another example, if mirror symmetry with respect to the x − s plane is assumed, all 

skew components are forbidden since Bϕ must behave purely cos-like. A similar 

0( ) cos( )dI I n dϕ ϕ ϕ=

1
0 0

0 0

1
0 0

0 0

sin( )
2

cos( )
2

n

r

n

I rB n
r r

I rB n
r rϕ

µ
ϕ

µ
ϕ

−

−

 
= −  

 

 
= −  

 

2 2
n na b+
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reasoning shows that any normal 2n-pole magnet transforms into a skew 2n-pole 

magnet if rotated by π/2n .  

 

Cartesian coordinates  

In cartesian coordinates, Eq. (1.4) reads 

 

As (x,y) + i V(x,y) =     (1.15) 

 
Separation of real and imaginary part and use of Eq. (1.8) yields  

As (x,y) = ℜ [  

+ (3x2y−y3) + (x4−6x2y2+y4)+  (x3y−xy3) ±... ]      (1.16) 

 

V (x,y) = ℑ κn zn = Bmain[a1 x − b1 y + (x2 − y2) − (x3− 3xy2)− 

 

(3x2y−y3) + (x4−6x2y2+y4)−  (x3y−xy3) ±... ]       (1.17) 

 
 

To get the cartesian components of the magnetic field we now have to take the 

gradient of −V(x,y) in cartesian coordinates, see Eq. (1.3)  

 

Bx (x,y) = − [−a1 + (x2− y2) +  

(x3−3xy2)+ (3x2y−y3) ±... ]          (1.18) 

 

By (x,y) = − [b1 + (x2−y2) + 

 

(3x2y−y3) + (x3−3xy2) ±... ]          (1.19) 

 

Another useful combination of Eqs. (1.18) and (1.19) is  

0
( )( )n n

n n n
n n o

z i x iyκ λ µ
∞ ∞

= =

= + +∑ ∑

main
0

n
n

n
k z B

∞

=

= −∑ 2 2 3 232 2
1 1 2

0 0

( ) ( 3 )
2 3o

bb a
b x a y x y xy x xy

r r r
+ + − + + − +

3
2

03
a
r

4
3

04
b
r

4
3

0

a
r

0n

∞

=
∑ 2

02
a
r

32
2

0 03
ab xy

r r
+

3
2

03
b
r

− 4
3

04
a
r

4
3

0

b
r

main 
V B
x

∂
=

∂
32 2
2

0 0 0

ab ay x
r r r

− − 3
2

0

2b xy
r

−

4
3

0

a
r

− 4
3

0

b
r

main 
V B
y

∂
=

∂
3 32 2
2 2

0 0 0 0

2a ba by x xy
r r r r

+ + +

4
3

0

a
r

+ 4
3

0

b
r
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By + i Bx = − (As + i V) = −  (λn + i µn) (x+iy)n−1 

 

By + i Bx = Bmain (bn − ian)(  

 
 
Here are two applications of the cartesian representation of multipoles:  

1. If the motion of particles is described in cartesian coordinates, the contribution 

of each individual multipole to the equation of motion is easily identified. As 

stated before, the coefficients bn are called the "normal" multipole coefficients, 

an are the "skew" coefficients. In magnets containing normal coefficients only, 

a flat beam (i.e. no vertical extension) remains flat forever, since for y ≡ 0 there 

is Bx ≡ 0 , i.e. no vertical force. Thus, there is no coupling of horizontal motion 

into the vertical. 

2. Equation (1.17) is useful in conventional lens design work with iron pole 

shoes. It describes the pole contours of dipole-(n = 1), quadrupole-(n = 2), 

sextupole-(n = 3), octupole-(n = 4), etc., magnets, because the pole contour is 

a line of constant magnetic potential. The pole contour of a normal quadrupole 

(b2), for instance, is given by the hyperbola x ·y = const (see Eq. (2.5)). 

Finally, we show explicitly the field distribution of the most important multipole 

components:  

 
Normal dipole (n = 1):    b1·Bmain = Bvert     (horizontally bending)  
Bϕ (r,ϕ)= Bvert·cosϕ   Br (r,ϕ)= Bvert·sinϕ 
Bx (x,y) = 0    By (x,y) = Bvert        

 
Skew dipole (n = 1):    a1·Bmain = Bhor     (vertically bending) 
Bϕ (r,ϕ)= Bhor·sinϕ   Br (r,ϕ)=−Bhor·cosϕ 
Bx (x,y) = −Bhor   By (x,y) = 0 
 
Normal quadrupole (n = 2):   b2·Bmain  = −g·r0     (where g is the gradient) 
Bϕ (r,ϕ) = −g r cos2ϕ   Br (r,ϕ) = −g r sin2ϕ 
Bx(x,y)  = − g y   By (x,y) = − g x 

 
 

z
∂
∂ 1n

n
∞

=
∑

1n

∞

=
∑ 1

0 0

)nx yi
r r

−+
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2 Accelerator magnets 

The modern particle accelerators are equipped with dipole magnets for beam 

deflection and quadrupoles for beam focusing. Soft iron of high permeability is used 

to concentrate the field into the small region where it is needed. This also reduces 

electric power consumption and easily allows to provide high field quality. In those 

cases where the required field strength is either very small 

(𝐵 <<  0.1𝑇) or above the saturation level (𝐵 >  2 𝑇), "air coil" magnets are used. 

(This section relays heavily on the source [Rossbach, P. Schmüser, Basic course on 

accelerator optics,  DESY-M-93-02.].) 

2.1 Dipole magnet  

A magnet with flat pole faces generates a homogeneous field 𝐵(Fig. 2.1). 

 
Figure 2.1: Schematic view of a dipole magnet 

The field is computed from the formula 

�𝑯 ∙ 𝒅𝒔 = ℎ𝐻0 + 𝑙𝐻𝐸 = 𝑛𝐼 

𝐻𝐸 =
1
𝜇𝑟
∙ 𝐻0 

For 𝜇𝑟 ≫ 1 we obtain 
𝐵0 = 𝜇0𝑛𝐼

ℎ
;   ℎ = 𝑔𝑎𝑝 ℎ𝑒𝑖𝑔ℎ𝑡       (2.1) 

Formula (2.1) is only approximate. In particular it neglects fringe fields and iron 

saturation. The radius of curvature for a particle of charge 𝑒 and momentum 𝑝 is given 

by 

1
𝜌

[𝑚−1] = 𝑒𝐵0
𝑝

= 0.2998 𝐵0[𝑇]
𝑝[𝐺𝑒𝑉/𝑐]

      (2.2) 
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2.2 Solenoid lens  

A relatively simple magnetic lens arises from the magnetic field of a rotationally 

symmetric coil, see Fig. 2.2. 

 

 
Figure 2.2: Particle trajectories and field lines in a "thin" lens formed by the solenoid 

Due to the Maxwell equation 𝑑𝑖𝑣𝑩 =  0, the magnetic field, which is purely 

longitudinal in the inner part of the coil, must contain radial components in the outer 

part. While particles moving exactly on the axis do not experience any force, the 

others suffer an azimuthal acceleration due to the radial component while entering 

and leaving the lens. Because of the azimuthal motion there is a radial force in the 

longitudinal field. As required for imaging, this force is, indeed, proportional to the 

radial distance 𝑟 if 𝑟 does not change too much during the passage of the lens. To 

increase the field close to the axis and to concentrate it into a small area, the coil is 

usually surrounded by an iron yoke. The focal length 𝑓𝑠𝑜𝑙 is given by  

 
1

𝑓𝑠𝑜𝑙
= ∫ �𝑒𝐵𝑠2𝑝

�
2
𝑑𝑠       (2.3) 

 

In contrast to optical lenses, the image is rotated with respect to the object. As seen 

from Eq. (2.3), 𝑓𝑠𝑜𝑙  increases with the square of the momentum 𝑝. Therefore a 

solenoid lens is effective for small momenta only. At  >>  1 𝑀𝑒𝑉/𝑐 , a quadrupole 

magnet is a much more effective lens. 

2.4 Quadrupole magnet 

 Quadrupole magnets have four iron pole shoes with hyperbolic contour (Fig. 2.3). 
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Figure 2.3: Cross-section of a quadrupole magnet. 

With the polarity shown, the horizontal component of the Lorentz force on a positively 

charged particle, moving into the plane of the drawing, is directed towards the axis, 

the vertical component is directed away from the axis. The magnet shown is thus 

horizontally focusing, vertically defocusing. The opposite holds when the current 

direction, the particle charge or its direction of motion is reversed. 

The field is linear in the deviation from the axis: 

𝐵𝑧 = −𝑔𝑥;𝐵𝑥 = −𝑔𝑧         (2.4) 

In the air space of the magnet which contains neither iron nor current conductors we 

have the Maxwell equation 

∇ × 𝑩 = 0       (2.5) 

Here the field can be written as the gradient of a potential  

𝑩 = −∇𝑉 with 𝑉(𝑥, 𝑧) = 𝑔𝑥𝑧       
 (2.6) 

The equipotential lines are the hyperbolas 𝑥𝑧 =  𝑐𝑜𝑛𝑠𝑡. The field lines are 

perpendicular to them. If the relative permeability of the iron is large,𝜇𝑟  >>  1, iron 

pole shoes with hyperbolic contour generate a rather pure quadrupole field (2.4).   

The gradient 𝑔 and the current 𝐼 in the coils can be related by the integral theorem 

 
∮𝑯 ∙ 𝒅𝒔 = 𝑛𝐼      (2.7) 

The path of integration is shown in Fig. 2.4. 
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Figure 2.4: Path of integration used to compute the quadrupole gradient as a function of the 
current 

𝑛𝐼 = ∮𝐻𝑑𝑠 =  ∫ 𝐻(𝑟)𝑑𝑟𝑅
0 +  ∫ 𝐻𝐸 ∙ 𝑑𝑠 +  ∫ 𝐻 ∙ 𝑑𝑠0

2
2
1    (2.8) 

 

On the first path 𝐻(𝑟)  =  𝑔𝑟/𝜇𝑟. The second integral is very small for 𝜇𝑟 >>  1. The 

third integral vanishes identically since 𝑯 ⊥ 𝒅𝒔. So we get in good approximation 

 
𝑛𝐼 = 1

𝜇0
 ∫ 𝑔 𝑟 𝑑𝑟𝑅
0  𝑟 = √𝑥2 + 𝑧2       

 (2.9) 
𝑔 = 2𝜇0𝑛𝐼

𝑅2
          

 (2.10) 

In analogy to the bending strength 1/𝜌 of a dipole magnet, it is convenient to relate 

the field gradient to its optical effect. To this end, the field gradient is normalized to 

the momentum of the particle, thus defining the quadrupole strength 

𝑘 = 𝑒𝑔
𝜌

           

 (2.11) 

Numerically 

𝑘[𝑚2] = 0.2998 𝑔[𝑇 𝑚⁄ ]
𝜌[𝐺𝑒𝑉 𝑐⁄ ]        (2.12) 

 

If 𝑙 denotes the length of the quadrupole, its focal length 𝑓 is given by 
1
𝑓

= 𝑘 ∙ 𝑙          (2.13) 

Generally, a lens with 𝑓 >>  𝑙 is called a "thin lens" -irrespective of the absolute 

value of 𝑙. An interesting property of the quadrupole is that the horizontal force 

component depends only on the horizontal position and not on the vertical position of 
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the particle trajectory. Similarly, the vertical component of the Lorentz force depends 

only on the vertical position.  

 
𝐹𝑥 = 𝑒𝑣𝐵𝑧(𝑥, 𝑧) =  −𝑒𝑣𝑔𝑥;  𝐹𝑧 =  −𝑒𝑣𝐵𝑥(𝑥, 𝑧) = 𝑒𝑣𝑔𝑧    (2.14) 

The important consequence is that in a so-called linear machine, containing only 

dipole and quadrupole fields, the horizontal and vertical betatron oscillations are 

completely decoupled.  

 

2.5 Particle tracks and transformation matrices 

The ideal orbit of a particle in the accelerator determined by the construction of the 

accelerator is called the reference orbit. In order to determine the motion of the 

particles, we first set up the general equation of motion in the moving coordinate 

system 𝐾 =  {𝑥,𝑦, 𝑧}. The derivation can be found. The linear equations of motion for 

the particles are 

𝑥′′(𝑧) + �
1

𝑅2(𝑧) − 𝑘(𝑧)�𝑥(𝑧) =
1

𝑅(𝑧)
∆𝑝
𝑝

 

𝑦′′(𝑧) + 𝑘(𝑧)𝑦(𝑧) = 0     (2.15) 

where 𝑝 denotes the reference momentum of the particles, 𝛥𝑝 the momentum 

deviation, 𝑅 (𝑧) the curvature radius and 𝑘 (𝑧) the quadrupole strength. The 

coordinate 𝑧 denotes the distance traveled along the nominal path and here is the 

independent variable, i. she takes on the role of the time. The general solution of the 

equation of motion is a linear combination of a cosine-like 𝐶 (𝑧) and a sinusoidal term 

𝑆 (𝑧) as well as a dispersion term 𝐷𝑥  (𝑧) describing the momentum-dependent part of 

the motion. 

𝑥(𝑧) = 𝐶(𝑧)𝑥0 + 𝑆(𝑧)𝑥0′ + 𝐷𝑥(𝑧)
∆𝑝
𝑝0

  

𝑦(𝑧) = 𝐶(𝑧)𝑦0 + 𝑆(𝑧)𝑦0′       (2.16) 

where 𝑥0  =  𝑥 (0), or 𝑦0  =  𝑦 (0) the initial values of the horizontal or vertical 

positions and 𝑥0′  =  𝑥′ (0), and 𝑦0′  =  𝑦′ (0) arethe initial values of the horizontal or 

vertical vertical angle to the nominal path. Here we assume a plane setpoint 

trajectory such that 𝐷𝑦  =  𝐷𝑦′  =  0. The trajectory equation can be solved analytically 

if the curvature radius 𝜌 (𝑧) and the quadrupole strength 𝑘 (𝑧) are constant. This is 

the case within individual components of beam guidance such as drift paths, dipole 
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magnets and quadrupole magnets. The mapping of the particle coordinates from the 

beginning to the end of the component (𝑥, 𝑥′)0  →  (𝑥, 𝑥′)𝑧 is then a linear 

transformation that can also be described using transfer matrices. 

�
𝑥
𝑥′

∆𝑝 𝑝0⁄
� = �

𝐶 𝑆 𝐷𝑥
𝐶′ 𝑆′ 𝐷𝑥′
0 0 1

��
𝑥
𝑥′

∆𝑝 𝑝0⁄
� 

�
𝑦
𝑦′

∆𝑝 𝑝0⁄
� = �

𝐶 𝑆 0
𝐶′ 𝑆′ 0
0 0 1

��
𝑦
𝑦′

∆𝑝 𝑝0⁄
�          (2.17) 

The matrix elements are constants that depend only on 𝑘, 𝑅 and the length 𝐿 of the 

component. The transfer matrix for a complete beam transport is the product of the 

transfer matrices of individual beam transport components. To simplify the derivation, 

we assume that the magnetic fields at the input and output of the component follow a 

step function [2]. 

 
Figure 2.5: The complete transfer matrix of this sequence of magnetic elements is the matrix 
product 𝑀𝑡𝑜𝑡 = 𝑀8・𝑀7・𝑀6・𝑀5・𝑀4・𝑀3・𝑀2・𝑀1 . Each of the matrices 𝑀1 . . .𝑀8 
decribes a section with  K(s) = const. 

2.6 Drift 

In a drift path, no external force acts on the particles. The transformation matrix 

depends only on the length 𝐿 of the drift path. 

1
𝑅

= 0 = 𝑘 => 𝑀𝑥 = 𝑀𝑦 = 𝑅𝑑𝑟𝑖𝑓𝑡 = �
1 𝐿 0
0 1 0
0 0 1

�   (2.18) 

2.7 Dipole magnet 

A dipole magnet whose field boundaries at the input and output are at right angles to 

the reference orbit is called the sector magnet (see Figure 2.6).  
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Figure 2.6: Schematic structure of a sector magnet with deflection radius ρ . 

 

𝑘 = 0;   𝛼 = 𝑙
𝑅

 => 𝑀𝑥 = 𝑅𝑑𝑖𝑝𝑜𝑙 = �
cos𝛼 𝑅 sin𝛼 𝑅(1 − cos𝛼)

− 1
𝑅

sin𝛼 cos𝛼 sin𝛼
0 0 1

� (2.19) 

𝑀𝑦 = 𝑅𝑑𝑟𝑖𝑓𝑡 = �
1 𝐿 0
0 1 0
0 0 1

�     (2.20) 

2.8 Rectangular dipole magnet  

In practice, dipole magnets are often built straight with the magnet end plates not 

perpendicular to the central trajectory. A rectangular magnet can be derived from a 

sector magnet by superimposing at the entrance and exit a "magnetic wedge" of 

angle 𝛿 =  𝜑/2, as shown in Fig. 2.7. 

  
Figure 2.7: Rectangular dipole magnet and horizontally defocusing magnetic wedge 

 

The deflection angle in the magnetic wedge is 

𝛼 = ∆𝑙
𝜌

= 𝑥 𝑡𝑎𝑛𝛿
𝜌

= 𝑥
𝑓
     (2.21) 

It acts as a thin defocusing lens with 1 𝑓⁄  =  (tan𝛿) 𝜌⁄  in the horizontal plane, as a 

focusing length with the same strength in the vertical plane. The horizontal 

transformation matrix for a rectangular magnet is 
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𝑀𝑥 = �
1 0 0

1
𝜌

tan 𝛿 1 0
0 0 1

�  �
cos𝜑 𝜌 sin𝜑 𝜌(1 − cos𝜑)

− 1
𝜌

sin𝜑 cos𝜑 sin𝜑
0 0 1

��
1 0 0

1
𝜌

tan 𝛿 1 0
0 0 1

�  2.23) 

For 𝜑 ≪ 1, 𝛿 = 𝜑/2: 

𝑀𝑥 = �
1 𝜌𝑠𝑖𝑛𝜑 𝜌(1 − 𝑐𝑜𝑠𝜑)
0 1 2 tan𝜑/2 
0 0 1

�;   𝑀𝑧 = �
𝑐𝑜𝑠𝜑 𝜌𝑠𝑖𝑛𝜑 0

− 1
𝜌
𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑 0
0 0 1

�   (2.24) 

Note that 𝑀𝑥 is exact for 𝛿 =  𝜑/2 while  𝜑 ≪ 1 has been used for 𝑀𝑧 only. We 

conclude that in a rectangular magnet the weak horizontal focusing of a sector 

magnet is exactly compensated by the defocusing at the entrance and exit face. The 

magnet acquires, however, a weak vertical focusing of the same strength. 

2.9 Quadrupole magnets 

In a quadrupole magnet, 1
𝑅

 =  0. The focusing quadrupole can be described with the 

following matrix. 

𝑅𝑄𝐹 = �
cos√𝑘𝐿 1

√𝑘
sin√𝑘𝐿 0

−√𝑘 sin√𝑘𝐿 cos√𝑘𝐿 0
0 0 1

�     (2.25) 

As can be seen from equation (2.24), the transfer matrix results in the other level in 

each case by 𝑘 being replaced by −𝑘. That is, one focusing quadrupole magnet is 

defocussing in the other plane. The transfer matrix of the defocusing quadrupole can 

be written as 

𝑅𝑄𝐷 = �
cosh√𝑘𝐿 1

√𝑘
sinh√𝑘𝐿 0

−√𝑘 sinh√𝑘𝐿 cosh√𝑘𝐿 0
0 0 1

�    (2.26) 

 

In many cases, the focal length 𝑓 of the quadrupole is much larger than the length of 

the magnet 𝑙 ≪ 1
𝑘𝑙

= 𝑓. Then the transfermartins in the "thin lens" approximation 

become easier 

𝑅𝑄𝐹 = �
1 0 0
−1

𝑓
1 0

0 0 1
�   and  𝑅𝑄𝐷 = �

1 0 0
1
𝑓

1 0
0 0 1

�    

 (2.27) 
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However, these matrices describe a magnet of length 0. Therefore, one has to 

consider the geometric length by multiplying two drift distances with the length 𝑙 / 2. 

The correct transfer matrices close to "thin lenses" are thus. 

𝑅𝑄𝐹 =

⎝

⎛
1 − 𝑙

2𝑓
𝑙 − 𝑙2

4𝑓
0

−1
𝑓

1 − 𝑙
2𝑓

0
0 0 1⎠

⎞   and  𝑅𝑄𝐷 =

⎝

⎛
1 + 𝑙

2𝑓
𝑙 + 𝑙2

4𝑓
0

1
𝑓

1 + 𝑙
2𝑓

0
0 0 1⎠

⎞  (2.28) 

 

2.10 Solenoid magnets 

The transfer matrices of a solenoid magnet can not be divided into vertical and 

horizontal matrices, because there is a coupling between the two transverse planes 

in the solenoid magnet. The matrices given here transform the vector (𝑥, 𝑥′,𝑦,𝑦′). 

The transfer matrix upon entering the solenoids is given by [3] 

𝑀𝑠𝑜𝑙,𝐴 =

⎝

⎜
⎛

1 0 0 0
0 1

𝑒𝐵
2𝑝

0
0

−𝑒𝐵 2𝑝⁄
0
0

1 0
0 1⎠

⎟
⎞

      (2.29) 

The transfer matrix within the solenoid magnet is given by 

𝑀𝑠𝑜𝑙,𝐴 =

⎝

⎜
⎛

1 𝑝
𝑒𝐵

sin𝜃 0 𝑝
𝑒𝐵

(1 − cos 𝜃)
0 cos 𝜃 0                   sin 𝜃
0

− sin 𝜃
− 𝑝

𝑒𝐵
(1 − cos 𝜃)

0
1            𝑝

𝑒𝐵
sin𝜃

0                 cos𝜃⎠

⎟
⎞

    (2.30) 

with the angle 𝜃 =  2𝐿 · 𝑒𝐵
2𝑝

, where 𝐿 denotes the length of the solenoid magnet. The 

transfer matrix at the output of the solenoid magnet 

𝑀𝑠𝑜𝑙,𝐴 =

⎝

⎜
⎛

1 0 0 0
0 1 − 𝑒𝐵

2𝑝
0

0
𝑒𝐵 2𝑝⁄

0
0

1 0
0 1 ⎠

⎟
⎞

      (2.31) 

The transfer matrix for the complete solenoid magnet is calculated as the product of 

the three matrices, 𝑀𝑔𝑒𝑠  =  𝑀𝑠𝑜𝑙,𝐸  ·  𝑀𝑠𝑜𝑙,𝑀 ·  𝑀𝑠𝑜𝑙,𝐴. In the approximation for "thin 

lenses", the transfer matrix simplifies to [3] 
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𝑀𝑠𝑜𝑙,𝐴 = �

1 0 0         0
−1/𝑓 1 0         0

0
0

0
0

1           0
−1/𝑓   1

�      (2.32)  

with the focal length 𝑓 = �𝑒𝐵
2𝑝
�
2
𝐿. 

 

2.11 Thin-lens approximation 

In many practical cases, the focal length f of the quadrupole magnet will be much 

larger than the length of the lens: 

𝑓 = 1
𝑘𝑙
≫ 𝑙  

Then the transfer matrices can be approximated by 

𝑀𝑥 = �
1 0 0
1
𝑓

1 0
0 0 1

�       (2.33)  

𝑀𝑍 = �
    1 0 0
− 1

𝑓
1 0

  0 0 1
�            (2.34) 

Note that these matrices describe a lens of zero length, i.e. they are derived from 

Eqs. (3.14) using 𝑙 → 0 while keeping 𝑘 · 𝑙 =  𝑐𝑜𝑛𝑠𝑡. The true length 𝑙 of the lens has 

to be recovered by two drift spaces 𝑙/2 on either side, e.g. 

𝑀𝑧 = �
1 𝑙

2
0

0 1 0
0 0 1

��
    1 0 0
−1

𝑓
1 0

    0 0 1
��

1 𝑙
2

0
0 1 0
0 0 1

� =

⎝

⎛
1 − 𝑙

2𝑓
𝑙 − 𝑙2

4𝑓
0

−1
𝑓

1 − 𝑙
2𝑓

0
0 0 1⎠

⎞  (2.35)  

One might ask why the approximation has not been made by expanding𝑠𝑖𝑛𝜑, cos𝜑, 

etc. in Taylor series and neglecting higher powers of 𝜑. However, terminating the 

Taylor series at some power, results in a transfer matrix whose determinant is not 

unity. For instance, in third order we obtain 

𝑀𝑧 =

⎝

⎛
1 − 𝑙

2𝑓
𝑙 − 𝑙2

6𝑓
0

−1
𝑓

1 − 𝑙
2𝑓

0
0 0 1⎠

⎞     (2.36) 

which does not fulfil 𝑑𝑒𝑡 𝑴 =  1. It can be shown that this would violate Liouville's 

Theorem of phase-space conservation.  
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For accelerators in the TeV range, where 1 𝜌2⁄   << |𝑘| <<  1 𝑙2⁄  , the thin-lens 

approximation is excellent for the matrix description of the entire accelerator. 

 

2.12  Quadrupole doublet  

The transformation matrix of a system of dipoles, quadrupoles and drift spaces is 

obtained by multiplying the matrices of each element in the correct order. An 

important example is a quadrupole doublet consisting of a focusing quadrupole, a 

drift space and a defocusing quadrupole. Figure 2.8 shows two trajectories (1,2) 

suggesting a tendency of both horizontal and vertical focusing in this kind of 

arrangement. 

 
 

Figure 2.8: A quadrupole doublet consisting of a horizontally and a vertically focusing 
quadrupole magnet. Trajectories 1 and 2 suggest that there is a tendency of simultaneous 
focusing in both the horizontal and vertical directions. 

The focusing action arises because trajectories entering parallel to the axis have a 

larger amplitude in the focusing than in the defocusing lens. Quadrupole doublets are 

indeed the simplest means of high energy beam focusing and imaging. We shall now 

derive the conditions for simultaneous imaging in both horizontal and vertical planes, 

treating the quadrupoles in the thin-lens approximation and assuming 𝑓𝑓𝑜𝑐 =  𝑓𝑑𝑒𝑓𝑜𝑐  =

 𝑓 for simplicity. The horizontal transfer matrix of the doublet is (for meaning of 

symbols see Fig. 21). 

𝑀𝑑𝑜𝑢𝑏,𝑥 = �
1 0 0
1
𝑓

1 0
0 0 1

��
1 𝑙 0
0 1 0
0 0 1

��
   1 0 0
− 1

𝑓
1 0

0 0 1
� = �

1 − 𝑙
𝑓

𝑙 0

− 𝑙
𝑓2

1 + 𝑙
𝑓

0
0 0 1

�   (2.37) 

The vertical transfer matrix is obtained if 𝑓 is replaced by −𝑓: 
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𝑀𝑑𝑜𝑢𝑏,𝑧 = �
1 + 𝑙

𝑓
𝑙 0

− 𝑙
𝑓2

1 − 𝑙
𝑓

0
0 0 1

�      (2.38) 

The matrix element 𝑀21  =  𝐶′ = −  𝑙 𝑓2⁄   is called the overall refractive power of the 

system and it is seen to be focusing in both planes. Somewhat sloppily one could say 

that a beam coming from infinity (i.e. all particles perfectly parallel to the 𝑠-axis, 

𝑥0′ = 0 ) will be focused in both planes, as indicated by trajectories 1 and 2 in Fig. 

2.8. The effective focal length 𝑓𝑑𝑜𝑢𝑏 for these particles is 

𝑓𝑑𝑜𝑢𝑏 =
𝑓2

𝑙
 

3. Magnets field measurement methods 

3.1 Choice of measurement method  

The choice of the measurement method depends on several factors. The field 

strength, homogeneity and variation in time, as well as the required accuracy all need 

to be considered. Also the number of magnets to be measured can determine the 

method and equipment to be deployed. As a guide, Fig. 3.1 shows the accuracy 

which can be obtained in an absolute measurement as a function of the field level, 

using commercially available equipment. An order of magnitude may be gained by 

improving the methods in the laboratory.  

The rotating coil method is a general and accurate method to measure the field 

quality of magnets: integrated field value, higher order multipoles, and magnetic axis. 

Recent instrumentation and acquisition systems allow high bandwidth and fully 

automated measurements. This method is the obvious choice for normal quadrupole 

magnets, and for superconducting magnets having circular apertures and where 

beam optics considerations require unprecedented precision in the field quality.  

These various methods complement each other. They are complemented by the use 

of Hall plates for local measurements and of NMR based instruments for high 

absolute accuracy and calibration. A cross-check between these various methods 

should be used whenever possible to ascertain precision in magnet measurements. 
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Fig. 3.1 Measurement methods: accuracies and ranges 

3.2 The Hall generator method 

 E.H. Hall discovered in 1879 that a very thin metal strip immersed in a transverse 

magnetic field and carrying a current developed a voltage mutually at right angles to 

the current and field that opposed the Lorentz force on the electrons. In 1910 the first 

magnetic measurements were performed using this effect. It is a simple and fast 

measurement method, providing relatively good accuracy, and therefore the most 

commonly used in large-scale field mapping. The accuracy can be improved at the 

expense of measurement speed. 

The Hall generator provides an instant measurement, uses very simple electronic 

measurement equipment and offers a compact probe, suitable for point 

measurements. A large selection of this type of gaussmeter is now commercially 

available. The probes can be mounted on relatively light positioning gear. 

Considerable measurement time may be gained by mounting Hall generators in 

modular multi-probe arrays and applying multiplexed voltage measurement. Also 

simultaneous measurements in two or three dimensions may be carried out with 

suitable probe arrays. The wide dynamic range and the possibility of static operation 

are other attractive features.  

However, several factors set limits on the obtainable accuracy. The most serious is 

the temperature coefficient of the Hall voltage. Temperature stabilization is usually 

employed in order to overcome this problem but increases the size of the probe 

assembly. The temperature coefficient may also be taken into account in the probe 

calibration by monitoring the temperature during measurements. It depends, 

however, also on the level of the magnetic field, so relatively complex calibration 

tables are needed. Another complication can be that of the planar Hall effect, which 
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makes the measurement of a weak field component normal to the plane of the Hall 

generator problematic if a strong field component is present parallel to this plane. 

This effect limits the use in fields of unknown geometry and in particular its use for 

determination of field geometry. 

Last but not least is the problem of the nonlinearity of the calibration curve, since the 

Hall coefficient is a function of the field level. The Hall generator of the cruciform type 

shows a better linearity and has a smaller active surface than the classical 

rectangular generator. Its magnetic center is, therefore, better defined, so it is 

particularly well suited for measurements in strongly inhomogeneous fields. Special 

types, which have a smaller temperature dependence, are available on the market, 

but these show a lower sensitivity. 

The measurement of the Hall voltage sets a limit of about 20 µ𝑇 on the sensitivity and 

resolution of the measurement, if conventional DC excitation is applied to the probe. 

This is mainly caused by thermally induced voltages in cables and connectors. The 

sensitivity can be improved considerably by application of a.c. excitation. A good 

accuracy at low fields can then be achieved by employing synchronous detection 

techniques for the measurement of the Hall voltage. Special Hall generators for use 

at cryogenic temperatures are also commercially available. Although they show a 

very low temperature coefficient, they unfortunately reveal an additional problem at 

low temperatures. The so-called "Shubnikov-de Haas effect" shows up as a field 

dependent oscillatory effect of the Hall coefficient which may amount to about one 

per cent at high fields, depending on the type of semiconductor used for the Hall 

generator. This adds a serious complication to the calibration. The problem may be 

solved by locating the Hall generator in a heated anticryostat. Altogether, the Hall 

generator has proved very useful for measurements at low temperature. 

Hall generators are usually calibrated in a magnet in which the field is measured 

simultaneously using the nuclear magnetic resonance technique. The calibration 

curve is most commonly represented in the form of a polynomial of relatively high 

order (7 or 9) fitted to a sufficiently large number of calibration points. This 

representation has the advantage of a simple computation of the magnetic induction 

from a relatively small table of coefficients.  

A physically better representation is the use of a piecewise cubic interpolation 

through a sufficient number of calibration points which were measured with high 
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precision. This can be done in the form of a simple Lagrange interpolation or even 

better with a cubic spline function. The advantage of the spline function comes from 

its minimum curvature and its "best approximation" properties. The function adjusts 

itself easily to nonanalytic functions and is very well suited to interpolation from tables 

of experimental data. The function is defined as a piecewise polynomial of third 

degree passing through the calibration points such that the derivative of the function 

is continuous at these points. Very efficient algorithms can be found in the literature. 

The calculation of the polynomial coefficients may be somewhat time-consuming but 

need only be done once at calibration time. The coefficients (typically about 60 for 

the bipolar calibration of a cruciform Hall generator) can be easily stored in a 

microprocessor device and the subsequent field calculations are very fast. The 

quality of the calibration function can be verified from field values measured between 

the calibration points. A well designed Hall-probe assembly can be calibrated to a 

long term accuracy of 100 𝑝𝑝𝑚. The stability may be considerably improved by 

powering the Hall generator permanently and by keeping its temperature constant. 

3.3 Rotating coil method 

The harmonic or rotating coil technique gives high resolution and measures in one 

coil revolution all relevant parameters of any accelerator magnet. Both theoretical 

and experimental developments allow one to confidently design sophisticated 

instruments measuring with high bandwidth and precision the full harmonic content of 

a magnet. It is the best method for measuring higher order multipoles within a well-

established theoretical frame, in particular of superconducting and quadrupole 

magnets having circular apertures.  

3.3.1 Description of the harmonic coil method 

A perfect dipole magnet gives a constant vertical field everywhere in the useful 

aperture. The flux enclosed by the simple coil described in Fig. 3.2 will be, 

considering an infinitely thin winding, 

Ψ(𝜃) = 𝑁𝑡 ∙ 𝐿 ∙ ∫ 𝐵1 ∙ cos 𝜃 ∙ 𝑑𝑅𝑅2
𝑅1

      (3.1) 

𝑁𝑡 and 𝐿 are respectively the number of turns and length of the measuring coil. The 

coil is supposed to be shorter than the magnet. The coil’s effective surface can be 

calibrated independently and is given by 
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Σ𝑐𝑜𝑖𝑙 = 𝑁𝑡 ∙ 𝐿 ∙ ∫ 𝑑𝑅𝑅2
𝑅1

=  𝑁𝑡 ∙ 𝐿 ∙ (𝑅2 − 𝑅1)    (3.2) 

The use of a voltage integrator connected to the measuring coil makes it possible to 

eliminate the time coordinate in the induction law of Faraday. The voltage integrator 

read as a function of the angle gives the flux directly from the zero angle where it is 

reset. The constant of integration is irrelevant for this method. 

  
Fig. 3.2: 2D representation of the flux seen by a simple coil rotating in a dipole field 

The units of Eq. (3.1) are 

Ψ = volt ∙ sec = 𝑡𝑒𝑠𝑙𝑎 ∙ 𝑚2 = 𝑤𝑒𝑏𝑒𝑟      (3.3) 

It is important to realize that the harmonic coil method does not make use of the 

voltage integrated over a given time, but rather over a given angular interval. The 

advantage of using a voltage integrator that can be externally triggered is that it 

eliminates to the first order the problem of a constant speed of rotation. A real system 

in fact measures differences of fluxes between two incremental angular positions. 

The angular encoder mounted on one coil end is a fundamental piece of equipment. 

The integrator is triggered by this encoder and collects incremental fluxes 𝛿𝛹𝑘, and 

the left part of Eq. (3.1) becomes 

Ψ(θi) −Ψ(θ0) = ∑ 𝛿Ψk𝑖
𝑘=1       (3.4) 

with 
𝛿Ψk =  Ψ(θk) −  Ψ(θk−1)      (3.5) 

3.3.2 Measuring the multipoles by rotating coils 

The power of the harmonic coil method is its ability to measure any type of 2D 

magnetic field. It can be demonstrated that a rotating coil measures the 2D field 

integrated over its length as long as the field component parallel to the rotation axis is 

zero on the two coil ends. The complex equation to best describe this 2D field is 

𝐵(𝑥 + 𝑖 ∙ 𝑦) = 𝐵𝑦(𝑧) + 𝑖 ∙ 𝐵𝑥(𝑧) = ∑ 𝐶𝑛 ∙ �
𝑧
𝑅𝑟
�
𝑛−1

∝
𝑛=1     (3.6) 
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The components 𝐶𝑛 = 𝐵𝑛  +  𝑖𝐴𝑛 are the normal and skew multipoles of the field. By 

definition for accelerator magnets, the normal components indicate a vertical field in 

the horizontal plane whilst the ‘skew’ terms apply for an horizontal field. The 𝐶𝑛 are in 

tesla at the reference radius 𝑅𝑟 . Figure 3.3 shows the field lines for normal and 

skew dipoles (𝐶1) and quadrupoles (𝐶2). 

The field quality is usually described as errors relative to the main field component 

𝐵𝑀 (𝑀 =  1 for a dipole, 𝑀 =  2 for a quadrupole) at the reference radius 𝑅𝑟. These 

errors are called ‘units’ and are given by 

𝑐𝑛 = 𝑏𝑛 + 𝑖 ∙ 𝑎𝑛 = 104 𝐶𝑛
𝐵𝑀

      (3.7) 

  

  
Fig. 3.3: Field lines of normal and skew dipole and quadrupole magnets 

The reference radius 𝑅𝑟 is an important concept for accelerator magnets having 

apertures much smaller than one metre. 𝑅𝑟 corresponds in practice to 

• the useful aperture for the beam,  

• 2/3 of the yoke aperture in resistive magnets, 

• 2/3 of the coil aperture in superconducting magnets,  

• the radius where the multipoles relative to the main field, the𝑐𝑛 in Eq. (3.7), 

have the same order of magnitude in a real magnet. 

It is important to carefully choose this reference radius at the beginning of a project. It 

will intervene in the discussions between all actors involved: beam optic physicists, 

magnet designers, measurement crew, and data analysis teams. 

The voltage integrated over a simple rotating coil described in Fig. 3.2 and rotating in 

any 2D field will therefore be determined by the time derivative of 
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Ψ(𝑧) = 𝑁𝑡 ∙ 𝐿 ∙ 𝑅𝑒 ∫ 𝐵(𝑧) ∙ 𝑑𝑧𝑅2
𝑅1

     (3.8) 

Since the coil rotates 

𝑧 = 𝑥 + 𝑖 ∙ 𝑦 = 𝑅 ∙ 𝑒𝑖𝜃(𝑡)      (3.9) 

and by applying Eq. (3.6) and integrating it over 𝑑𝑅 

Ψ(θ = ω ∙ t) = 𝑅𝑒 �∑ 𝑁𝑡 ∙ 𝐿 ∙
𝑅2𝑛−𝑅1𝑛

𝑛∙𝑅𝑟𝑛−1
∙ 𝐶𝑛 ∙ 𝑒𝑖𝑛𝜃 ∝

𝑛=1 �     (3.10) 

This allows a formal separation between what belongs to 

• the measured field components 𝐶𝑛, 

• the time dependence of the signal 𝑒𝑖𝑛𝜃(𝑡), 

• the coil sensitivity factor 𝐾𝑛 defined as 

𝐾𝑛 = 𝑁𝑡 ∙ 𝐿 ∙
𝑅2𝑛−𝑅1𝑛

𝑛∙𝑅𝑟𝑛−1
        (3.11) 

The 𝐾𝑛 are calculated once for each measuring coil used. They can be complex 

numbers in the case of tangential coils, or coils not perfectly aligned radially. These 

calculations are substantial if the wires can no longer be considered point-like. Their 

values can be improved by individual calibrations. 

The multipoles of the field are directly given by the Fourier analysis coefficients 𝛹𝑛 of 

the integrated voltage over a coil turn 𝛹(𝜃): 

𝛹𝑛 = 𝐾𝑛 ∙ 𝐶𝑛 =  𝐾𝑛 ∙ (𝐵𝑛 + 𝑖𝐴𝑛)     (3.12) 

3.3.3 Errors associated with the harmonic coil method 

Mechanical or electronic imperfections mainly degrade the measurement of the 

‘higher order’ multipoles, i.e., those with harmonic numbers higher than the magnet 

multipole order. The three main error sources will be studied in detail:  

• voltage integrator offset coupled with irregular rotation rate of the coil, 

• error in the coil angle measurement due either to the angular encoder or to 

torsions of the coil shaft during rotation, 

• instability or movement of the rotation axis of the coil shaft due to gravity, 

bearings quality, or vibrations. 

Schemes of compensation coil arrays, connected in opposition, have been 

developed to remove the signal coming from the magnet main multipole thus allowing 

the increase of the amplification factor at the input of the integrator. More importantly, 
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these compensation coil assemblies remove nonlinear coupling coming from the 

main harmonic and degrading the high-order harmonic measurement. 

 

4. AREAL magnets 

4.1 Introduction 

The low energy electron linear accelerator facility AREAL can be considered as the 

first phase of realization of the synchrotron light source project CANDLE in Armenia. 

The energy of the electron beam will reach ~50 𝑀𝑒𝑉 as the result of the 

implementation of two 1.5𝑚 long accelerator sections.  Bending magnets as well as 

corrector magnets are in use for beam guidance and steering. Beam focusing is 

realized applying solenoid and several quadrupol magnets in doublet and triplet 

arrangements.  Finally, light with specific properties will be produced through the 

periodic magnetic structure of an undulator. 

 
Fig. 4.1: Layout of the  low energy electron linear accelerator facility AREAL. 

At AREAL, the magnetic field measurements of the magnets and insertion devices is 

conducted at the Magnetic Measurements Laboratory. It is equipped with two 

different measurement benches, each one intended for a type of magnetic 

measurements with different sensors. 

Introduction to the accelerator magnets can be found in chapter 2 and Ref. [3]. 

 4.2 Dipole magnet 

As a part of the AREAL spectrometer for energy and energy spread measurements, 

a dipole magnet was designed, fabricated and tested at the CANDLE Synchrotron 

Research Institute. The energy range of the electron beam achieved just after the RF 

gun is 2 − 5 𝑀𝑒𝑉.  
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The magnet design and geometry optimization resulted in 12𝑐𝑚 ×  12𝑐𝑚 square 

poles with a gap of 4𝑐𝑚 and a yoke size of 8𝑐𝑚 × 6𝑐𝑚. In the simulations, Steel 1008 

material was used with properties close to the steel used in magnet fabrication. The 

magnet consists of two coils with 500 windings each. In the field measurements a 

magnet-probe alignment < 100µ𝑚 was reached. Figure 4.2 presents the mechanical 

layout of the simulated design and the measured magnetic field distribution along the 

pole symmetry. Measurements were taken by Hall probes.  

Figure 4.3 presents simulated and measured bending field distributions along the 

electron 900 bend trajectory and the measured field in consistency with simulation 

results. 

 
 

 
Figure 4.2: AREAL dipole magnet design and measured field map of bending field 
component. 

 

  
Figure 4.3: Dipole magnet simulated (red) and measured (blue dots) bending field 
distributions along both horizontal axes in the center. 

As it can be seen, the difference between simulated and  measured field is less than 

2% in the magnet region and increases at far distances from magnet edges. One can 

also see that the measured field amplitudes are smaller than expected from the 

simulations which is directly related to fabrication errors and deviations of yoke 

material properties. 
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Fig. 4.4: Dipole magnet(left); calculated via CST simulation and measured field (right). 

The final analysis of measured and simulated magnetic field results in a relation 

between the longitudinal momentum 𝑃𝑧 of the electrons and the bending field 

amplitude 𝐵0 at the pole centre given as 𝑃𝑧 � 
𝑀𝑒𝑉
𝑐
� =  0.029𝐵0 [ 𝑚𝑇 ]. 

To obtain the dispersive properties of this dipole magnet, a particle tracking 

simulation was performed that includes five particles with different energies with the 

same initial position (Fig. 4.5). In the simulation the particle energies are taken with 

𝑑𝐸 = 0.25𝑀𝑒𝑉  and 𝑑𝐸 = 0.5𝑀𝑒𝑉 deviations from the design particle energy of 

5MeV. 

 
 

Figure 4.5: Trajectories of the particles with 
different energies passing the 90° bend dipole. 
Magnet symmetry axis (red dashed), particle 
design axis (black dashed) and positions of the 
screens are presented. 

Figure 4.6: Measured hysteresis curve of 
the dipole magnet. 

 

The final analysis of the transverse phase space at 18cm distance from magnet edge 

results in a dispersion function of 𝐷 =  0.24 𝑚 and a dispersion slope 𝐷′ =  0.96 𝑟𝑎𝑑 . 
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Figure 4.6 presents the measured hysteresis curve of the dipole for a maximum coil 

current of ~8𝐴. The residual(=remnant) field of the magnet is ~2𝑚𝑇 that is about 50 

times bigger than the measured earth magnetic field of ~0.04𝑚𝑇. Finally, a magnet 

degauss procedure was developed from the measurement that is performed in three 

steps. 

4.3 Solenoid magnet 

The AREAL solenoid magnet design (Fig. 4.7) is modified from a DESY type 

solenoid. The magnet consists of a single coil with 20 windings and 1 cm thick iron 

shielding. The magnet length is about 6.4 cm that has cooling passes in the outer 

surfaces of the iron shield. The magnetic iron cover of the solenoid provides a return 

path for the magnetic field thus screening effectively the field in the outer space and 

concentrating it to the inside of the solenoid gap. 

 

  
Fig. 4.7: Solenoid magnet and magnet’s measured (blue dots) and simulated (red) 
longitudinal field on axis (right). 

 

During the field measurements the magnet shows stable operation in terms of 

heating for currents up to 8A that corresponds to the peak magnetic field of ~175𝑚𝑇. 

Fig. 4.7 is presenting the measured and simulated longitudinal magnetic field. The 

difference between measured and simulated fields is less than 2%. During the field 

measurements, a magnet-probe alignment < 300µ𝑚 was achieved.  

The resulting effective field length of 39.57 𝑚𝑚 was obtained that is defined as a 

normalized integral of 𝐵𝑧2. According to Eq. (2.3), a focal length of ~85 cm is 

expected for the 5 𝑀𝑒𝑉 electron beam at 8 𝐴 solenoid current. 
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4.4 Corrector magnet 

A corrector magnet (Fig.4.8) was designed for trajectory steering of electron beams 

with energies up to 5 𝑀𝑒𝑉. The magnet is iron-free and its coils are optimized to 

provide a homogeneous steering field region. 

  
Figure 4.8: Iron-free steering magnet 
design. 

Figure 4.9: The steering magnetic field 
distribution on the magnet axis in case of 
excitation of the two coils generating a 
horizontal steering field. 

 

  
Fig. 4.10: Corrector magnet (left); Field mapping via Hall probe over the transverse plane (right). 

 

The beam trajectory steering in horizontal and vertical planes will be provided by coil 

doublets that are arranged parallel to each other. The gap of the magnet has 50mm 

diameter and a maximum current of 4 𝐴 is assumed in each coil doublet (Fig 4.9). 

Each coil consists of 480 windings in the center coil and 60 windings in both edge 

coils. The steering field distribution is presented in Figure 4.10 which will provide a 

maximum of ~5.6 𝑚𝑟𝑎𝑑 integrated transverse kick to the 5𝑀𝑒𝑉 electron beam. The 

effective length of the steering field is 15.2 𝑐𝑚 and the maximum field is 𝐵0 ≈

 0.6𝑚𝑇 at 4𝐴 current. The good steering field region is within the transverse circle of 

radius 8 mm that provides a magnetic field of better than 1% homogeneity. As a 
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drawback, the field has a non-vanishing quadrupole component the integrated effect 

of which is, in comparison with the dipole component < 0.6%. Finally, one concludes 

that this iron-free corrector will provide a steering field with accuracy < 1% within the 

good field region of 8mm radius.   

4.5 Quadrupole magnet doublet for AREAL  

A symmetric quadrupole doublet configuration has been chosen to allow varying the 

beam spot size and its shape on the target. The symmetric quadrupole produces an 

optimum target beam spot uniformity assuming an axially symmetric input beam. 

Table 4.1: Magnets parameters 
Doublet length by Iron 165  mm 

Magnet length  60 mm 

Distance (iron to iron) 45 mm 

Distance between centers 0.105 m 

Magnet bore diameter 43 mm 

Net focal length of system at 5MeV 1.1 m 

Field gradient  0.6 T/m 

Magnet Inductance  19 mH  
 

  
Figure 4.11: Quadrupole magnet at 
measurement laboratory. 

Figure 4.12: Horizontal field mapping via Hall 
probe over the vertical axis (right). 

 
Figure 4.13: The quadrupole magnet is mounted downstream to the solenoid magnet for 
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beam measurements. 

5. Magnet measurements 

At AREAL, the magnetic field measurements of the magnets and insertion devices is 

conducted at the Magnetic Measurements Laboratory. It is equipped with two 

different measurement benches, each one intended for magnetic measurements with 

different sensors. 

Introduction to the accelerator magnets can be found in chapter 2 and in Ref. [3]. 

5.1 Equipment and tools 

The measurements of dipole, solenoid, corrector and quadrupole magnets are 

important parts of the AREAL electron facility program. The CANDLE diagnostics 

laboratory has successfully completed the high precision Magnetic Measurement 

Bench (MMB) that enables one to map the magnetic field with high accuracy. The 

results of these measurements agree well with the magnet simulations performed by 

the magnetic field simulation codes POISSON and CST Microwave Studio. Relying 

on the measurement data, the magnets are constructed and the AREAL first electron 

beam was successfully obtained on 20 December 2013.  

 
Figure 5.1: Magnetic Measurement Bench; the maximum movement along the directions is 
𝑥 = 40𝑐𝑚, 𝑦 = 90𝑐𝑚, 𝑧 = 14𝑐𝑚, where z is  directed along the robotic arm. The minimum 
step is 10−4𝑐𝑚. 

 

The Magnetic Measurement Bench is equipped with a robotic arm carrying the 

magnetic field point sensor, a step motor, a control and a power supply unit [Fig 5.1]. 

It uses a Lake Shore Model 425 gaussmeter and 400 Series axial and transverse 
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pick up Hall Probes as field sensors [http://www.lakeshore.com]. The parameters of 

the gaussmeter and Hall Probes are given below. 

Lake Shore Model 425 gaussmeter parameters: 

Field ranges from 350 mG to 350 kG, 
DC measurement resolution to 1 part of ±35,000, 
Basic DC accuracy of ±0.20%, 
DC to 10 kHz AC frequency, 
USB interface, 
Large liquid crystal display, 
Sort function (displays pass/fail message) 
Alarm with relay 
 Standard probe included  
Standard and custom probes available 

 
 
 
 
Axial Probe  

 

 
 

Model HMNA-1904-VR 
L mm 4 ± 0.125 
D mm (in) 0.187 𝑑𝑖𝑎 ± 0.005 
A mm (in) 0.005 ± 0.003 
Active area mm (in) 0.030 𝑑𝑖𝑎 
Stem material Fiberglass epoxy 

Frequency range DC to 10 kHz 

Usable full scale ranges HSE 
35G 350 G, 3.5kG,35kG 

Corrected accuracy (% rdg at 250C) ±0.2% 𝑡𝑜 30𝑘𝐺 
and 

±0.25% 30 𝑡𝑜 35𝑘𝐺 

Temp coefficient (max) zero 00𝐶 𝑡𝑜  750𝐶 

Temp coefficient (max) Calibration ±0.09𝐺/𝐶 
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Contains temp sensor −0.04%/𝐶 
 
 
Transverse Probe 

 

 
 

Model HMMT-6J08-VR 

L mm 8 ± 0.125 
T mm (in) 0.061 𝑚𝑎𝑥 
W mm (in) 0.18 ± 0.005 
A mm (in) 0.15 ± 0.05 

Active area (in) 0.04 𝑑𝑖𝑎 
Stem material Aluminum 

Frequency range DC to 800 Hz 

Corrected accuracy (% rdg at 250C) HSE 
35G 350 G, 3.5kG,35kG 

 ±0.2% 𝑡𝑜 30𝑘𝐺 
and 

±0.25% 30 𝑡𝑜 35𝑘𝐺 

Temp coefficient (max) zero ±0.09𝐺/𝐶 

Contains temp sensor −0.04%/𝐶 
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Task 1: Measurement of the magnetic field at the center of the 
dipole magnet for the different values of the magnet excitation 
current 

 

Set the gaussmeter to zero keeping the probe away from any magnet area.  Place 

the Hall probe in the center of the magnet parallel to the pole face. 

Starting from zero current and rising up, record the magnetic field for the various 

values of current in ~0.5𝐴 steps up to a maximum current of ~10𝐴. Repeat this 

working down from the maximum value of the zero current. Plot this data and explain. 

Try to answer the following questions: 

 Is the measured field zero at zero current? 

 Does the measured field vary linearly with current? 

 Why is the magnetic field different between the periods of increasing the current and 

decreasing the current? 

Based on obtained values for the magnetic field from the conducted measurements, 

the known current, and estimating the dimensions of the magnet, calculate the 

number of windings in the magnet. Explain the effects of the iron on the field. 

Task 2 : Mapping the magnetic field across the gap of the magnet 

At an intermediate value of the magnet excitation current (~2.5 𝐴 for the small 

AREAL quadrupole), step the probe over the x, y transverse coordinates (these 

coordinates should be defined properly) to measure how the field varies with position. 

Plot this and determine the maximum variation of magnetic field across the pole tips. 

This scenario should be done both for dipole and quadrupole magnets. For the 

quadrupoles calculate the field gradient using the point measurements by Hall 

probes. 

                                                                                                                                                    

6. Dipole and quadrupole measurements with compensated rotating 
coil 

6.1 INTRODUCTION 
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 Measurement of the Vector Potential   

Consider the flux enclosed by a pair of coils.  The voltage excited in a closed loop is 

proportional to the change in the total magnetic flux.  The circuitry for collecting the 

data from a rotating coil includes an integrator.  The digital integrator consists of a 

voltage to frequency converter and an up-down counter (which counts pulses).  The 

output from the integrator is latched at fixed angular positions, triggered by pulses at 

equal angular intervals from a shaft encoder.  A motor is used to rotate the coil at 

approximately uniform rotational velocity. The output from the integrator will be a 

cosine curve with periodicity N, where N is the index of the fundamental magnetic 

field. 

  A computer collects the data from the integrator triggered by pulses from the shaft 

encoder.  It also controls the magnet power supply, the motor rotating the coil, and 

collects the output of a shunt or current transductor which monitors the current from 

the power supply.  The computer archives the raw data, performs a Fourier analysis 

and reduces the data and tabulates multipole errors, normalized to the fundamental 

and the phases of the multipole errors.  

  The multipole errors are typically small compared to the fundamental signal.   
𝐵𝑛

|𝐵𝑁|
≤ 1 × 10−3 at the magnet aperture 

Thus, the voltage signal from error multipoles is typically substantially less than 1x10-

3 of the voltage signal from the fundamental field.  Therefore, a compensated (or 

bucked) coil configuration is devised which is insensitive to the fundamental field and 

measures only the error signals.   

The geometry of the typical compensated coil is described in the following 

Figure 6.1:   

 
Figure 6.1: The geometry of the typical compensated coil. Mouter and Minner are the number of 
turns of the outer and inner coils, respectively. 

 

 r1

 r2

r3

r4

M inner turnsM inner turns M outer turnsM outer turns
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6.2 Voltage from the Measurement Coil       

 The integrated output voltage from a rotating coil in a magnetic field is a 

function of the magnetic vector potential at the locations of the windings of the coil, 

the magnet effective length and the number of turns in the measurement coil. In the 

following discussion, the outer coils are located at radii r1 and r3 and sweep the field 

at complex coordinates 𝑧1 and 𝑧3.  The inner coils are located at radii r2 and r4 and 

sweep the field at complex coordinates 𝑧2 and 𝑧4.   

6.2.1 Outer Coil   

Φ𝑜𝑢𝑡𝑒𝑟 = 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 = 𝑀𝑜𝑢𝑡𝑒𝑟𝐿𝑒𝑓𝑓 Δ𝐴 = 𝑀𝑜𝑢𝑡𝑒𝑟𝐿𝑒𝑓𝑓𝑅𝑒[𝐹(𝑧1) − 𝐹(𝑧3)] 

𝐹(𝑧) = �𝐶𝑛𝑧𝑛 = � |𝐶𝑛| 𝑒𝑖𝜓𝑛𝑟𝑛𝑒𝑖𝑛𝜃 = �|𝐶𝑛|𝑟𝑛𝑒𝑖(𝑛𝜃+𝜓𝑛) 

𝐴 = 𝑅𝑒 𝐹(𝑧) = 𝑅𝑒 ��|𝐶𝑛|𝑟𝑛𝑒𝑖(𝑛𝜃+𝜓𝑛)� = �|𝐶𝑛|𝑟𝑛 cos(𝑛𝜃 + 𝜓𝑛) 

 

Substituting 

Φ𝑜𝑢𝑡𝑒𝑟 = 𝑀𝑜𝑢𝑡𝑒𝑟𝐿𝑒𝑓𝑓𝑅𝑒[𝐹(𝑧1) − 𝐹(𝑧3)] = 𝑀𝑜𝑢𝑡𝑒𝑟𝐿𝑒𝑓𝑓�|𝐶𝑛|(𝑟1𝑛 − 𝑟3𝑛) cos(𝑛𝜃 + 𝜓𝑛) 

For each term in the expansion;   

Φ𝑛−𝑜𝑢𝑡𝑒𝑟 = 𝑀𝑜𝑢𝑡𝑒𝑟𝐿𝑒𝑓𝑓|𝐶𝑛|(𝑟1𝑛 − 𝑟3𝑛) cos(𝑛𝜃 + 𝜓𝑛) 

If one takes the Fourier expansion of the measured integrated voltage from the outer 

coil, the expansion is written;  

Φ =
a0
2

+ �𝑎𝑛 cos𝑛𝜃 + 𝑏𝑛 sin𝑛𝜃
∝

𝑛=1

 

Φn = 𝑎𝑛 cos𝑛𝜃 + 𝑏𝑛 sin𝑛𝜃 
|Φn| = �𝑎𝑛2 + 𝑏𝑛2 

 
But  Φ𝑛−𝑜𝑢𝑡𝑒𝑟 = 𝑀𝑜𝑢𝑡𝑒𝑟𝐿𝑒𝑓𝑓|𝐶𝑛|(𝑟1𝑛 − 𝑟3𝑛) cos(𝑛𝜃 + 𝜓𝑛) 

cos(𝑛𝜃 + 𝜓𝑛) = cos𝑛𝜃 cos𝜓𝑛 − sin𝑛𝜃 sin𝜓𝑛. 

Substituting;   

Φ𝑛−𝑜𝑢𝑡𝑒𝑟 = 𝑀𝑜𝑢𝑡𝑒𝑟𝐿𝑒𝑓𝑓|𝐶𝑛|(𝑟1𝑛 − 𝑟3𝑛)(cos𝑛𝜃 cos𝜓𝑛 − sin𝑛𝜃 sin𝜓𝑛) 

From the Fourier analyzed  

Φn = 𝑎𝑛 cos𝑛𝜃 + 𝑏𝑛 sin𝑛𝜃 

Equating the coefficients in the Fourier analysis of the integrator output.   

𝑎𝑛 = 𝑀𝑜𝑢𝑡𝑒𝑟𝐿𝑒𝑓𝑓|𝐶𝑛|(𝑟1𝑛 − 𝑟3𝑛) cos𝜓𝑛   
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𝑏𝑛 = 𝑀𝑜𝑢𝑡𝑒𝑟𝐿𝑒𝑓𝑓|𝐶𝑛|(𝑟1𝑛 − 𝑟3𝑛) sin𝜓𝑛   

tan𝜓𝑛 =
sin𝜓𝑛
cos𝜓𝑛

=
− 𝑏𝑛
𝑀𝑜𝑢𝑡𝑒𝑟𝐿𝑒𝑓𝑓|𝐶𝑛|(𝑟1𝑛 − 𝑟3𝑛)

𝑎𝑛
𝑀𝑜𝑢𝑡𝑒𝑟𝐿𝑒𝑓𝑓|𝐶𝑛|(𝑟1𝑛 − 𝑟3𝑛)

= −
𝑏𝑛
𝑎𝑛

 

𝜓𝑛 = arctan(−𝑏𝑛/𝑎𝑛)  
∣ Φ𝑛−𝑜𝑢𝑡𝑒𝑟 ∣= �𝑎𝑛2 + 𝑏𝑛2 = 𝑀𝑜𝑢𝑡𝑒𝑟𝐿𝑒𝑓𝑓|𝐶𝑛|(𝑟1𝑛 − 𝑟3𝑛) 

6.2.3 The Fundamental Field 

Measurements of the fundamental field (n=N) are made using the outer coil.   

ΦN = 𝑀𝑜𝑢𝑡𝑒𝑟𝐿𝑒𝑓𝑓|𝐶𝑛|(𝑟1𝑁 − 𝑟3𝑁)   

We define the following terms.   

𝛽1 ≡
𝑟3
𝑟1

   where 𝛽1 is a positive number. 

𝑆𝑛 ≡ (1 − (−𝛽1)𝑁) 
|ΦN| = 𝑀𝑜𝑢𝑡𝑒𝑟𝐿𝑒𝑓𝑓|𝐶𝑛|(𝑟1𝑁 − 𝑟3𝑁) = 𝑀𝑜𝑢𝑡𝑒𝑟𝐿𝑒𝑓𝑓|𝐶𝑛|(𝑟1𝑁 − 𝑟3𝑁)

= 𝑀𝑜𝑢𝑡𝑒𝑟𝐿𝑒𝑓𝑓|𝐶𝑛|𝑟1𝑁(1− (−𝛽1)𝑁) = 𝑀𝑜𝑢𝑡𝑒𝑟𝐿𝑒𝑓𝑓|𝐶𝑛|𝑟1𝑁𝑆𝑛 

|𝐶𝑁| =
|ΦN|

𝑀𝑜𝑢𝑡𝑒𝑟𝐿𝑒𝑓𝑓 𝑟1𝑁𝑆𝑛
 

|𝐻𝑁|𝑟1𝐿𝑒𝑓𝑓 = 𝑁 |𝐶𝑁|𝑟1𝑁−1𝐿𝑒𝑓𝑓 

|𝐻𝑁|𝑟1𝐿𝑒𝑓𝑓 =
𝑁|ΦN|

𝑟1𝑀𝑜𝑢𝑡𝑒𝑟𝑆𝑛
 

We check the units.   

|𝐻𝑁|𝑟1𝐿𝑒𝑓𝑓 = 𝑇𝑚 =
𝑊
𝑚2𝑚 =

𝑉𝑠𝑒𝑐.
𝑚

 

𝑁|ΦN|
𝑟1𝑀𝑜𝑢𝑡𝑒𝑟𝑆𝑛

=
𝑉𝑠𝑒𝑐.
𝑚

 

For the magnets which are most usually measured (the dipole, quadrupole and 

sextupole);  

𝑆1 = 1 + 𝛽1;       𝑆2 = 1 − (−𝛽1)2;        𝑆3 = 1 − (−𝛽1)3  

6.2.4 Quadrupole Measurement Coil   

For a quadrupole coil, it is desirable to make s2 and 𝑠1 = 0.   

𝑠2 = {1 − (−𝛽1)2 − 𝜇𝜌2(1 − (−𝛽2)2)} = 1 − 𝛽12 − 𝜇𝜌2(1 − 𝛽22) = 0 
𝑠1 = �1 − (−𝛽1) − 𝜇𝜌�1 − (−𝛽2)�� = 1 + 𝛽1 − 𝜇𝜌(1 + 𝛽2) = 0 

The “classical” geometry which satisfies these constraints has the following 

parameters; 𝛽1 = 0.5; 𝛽2 = 0.2;   𝜌 = 0.625;   𝜇 = 2  
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The balance of the bucked (i.e. compensated) sensitivities are computed and 

graphed.   

𝑠𝑛 = {1 − (−𝛽1)𝑛 − 𝜇𝜌𝑛(1 − (−𝛽2)𝑛)} 

 
Figure 6.3: Quadrupole coil sensitivities with respect to the multipole content 

 

This coil configuration can also be used to measure a dipole magnet as shown in 

figure 6.3.  Since the coil has no quadrupole sensitivity, a quadrupole error must be 

evaluated using the “uncompensated” configuration.  Since a quadrupole multipole is 

NOT an allowed multipole for a symmetric dipole magnet, this does not usually 

present a serious problem.  However, if the dipole design constraints requires that 

the symmetry conditions be violated (e.g. a “C” shaped dipole), the evaluation of a 

small quadrupole error may be marginal.   

One needs to design and fabricate the coil such that the electrical signal obtained 

from the integrator is sufficiently large for the sensitivity of the instrument.  The level 

of electrical noise in a system is of the order of a few 𝜇Volts.  Thus, in order to keep 

the signal above the 𝜇Volt range, the measurement coils are wound with many turns 

(typically > 100). 

The Normalized Multipole Error Spectrum   

The following figure illustrates a typical “compensated” signal from an integrator.  A 

drift component continues to exist.  Also, although the signals from the “higher 

frequency” signals can be easily detected, the signal is still dominated by the 

fundamental signal.  This is because the desired coil geometry cannot be exactly 

fabricated and some fundamental signal continues to exist.   
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A “figure of merit”, defined as the bucking ratio, is typically computed as part of the 

reduced data.  This is the ratio of the electrical signal from the fundamental field from 

the uncompensated and compensated configuration and describes how closely the 

measurement coil was built to its specified design.  A higher value for this bucking 

ratio indicates how well the fundamental signal has been reduced.   

𝐵𝑢𝑐𝑘𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜 =
|Φ|N−unbucked 

|𝜙|𝑁−𝑏𝑢𝑐𝑘𝑒𝑑
 

 

For a carefully fabricated coil, bucking ratios ≈ 400 can be achieved.  This means 

that for a high quality magnet �𝐵𝑛
𝐵𝑁
� ≤ 10−3, the ratio of the fundamental field to the 

measured error field is ≈ 2.5.  A typical raw data output for a quadrupole is shown in 

the following Figure 6.4.  It can be seen that, although the error fields are apparent, 

the signal is still dominated by the remaining fundamental field with a periodicity of 

two.   

 
Figure 6.4: A typical raw data output for a quadrupole 

 

After the drift is subtracted from the data, the cosine and sine coefficients of the 

Fourier expansion for the integrated signal from the “bucked” signal from the 

integrator can be computed.   

𝜙 =
a0
2

+ �𝑎𝑛 cos𝑛𝜃 + 𝑏𝑛 sin𝑛𝜃
∝

𝑛=1

 

𝜙n = 𝑎𝑛 cos𝑛𝜃 + 𝑏𝑛 sin𝑛𝜃 
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The expansion can also be expressed in terms of only the cosine terms with a phase 

angle.   

 
 

𝜙 − 𝑎0
2

= ∑ |𝜙𝑛| cos( 𝑛𝜃 + 𝜆𝑛) ∝
𝑛=1 where  |𝜙n| = �𝑎𝑛2 + 𝑏𝑛2;  𝜆𝑛 = arctan− 𝑏𝑛

𝑎𝑛
  

 For the unbucked configuration; |𝐻𝑁|𝑟1𝐿𝑒𝑓𝑓 = 𝑁|ΦN|
𝑟1𝑀𝑜𝑢𝑡𝑒𝑟𝑆𝑛

   

 For the bucked configuration; |𝐻𝑛|𝑟1𝐿𝑒𝑓𝑓 = 𝑛|𝜑𝑛−𝑏𝑢𝑐𝑘𝑒𝑑|
𝑟1𝑀𝑜𝑢𝑡𝑒𝑟𝑆𝑛

  

 Thus the measured normalized multipoles are; �𝐻𝑛
𝐻𝑁
�
𝑟1

= 𝑛|𝜑𝑛|𝑆𝑛
𝑁|Φ𝑁|𝑆𝑛

  

6.2.5 Dipole Measurements 

When the coil is used to measure a dipole magnets, the first error harmonic is the 

quadrupole field.  Since in the bucked configuration, the sensitivity is zero, the 

quadrupole error harmonic must be measured with the unbucked coil.   

|𝐻𝑁|𝑟1𝐿𝑒𝑓𝑓 =
𝑁𝜙𝑁𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒
𝑟1𝑀𝑜𝑢𝑡𝑒𝑟𝑆𝑁

=> |𝐻1|𝑟1𝐿𝑒𝑓𝑓 =
𝜙1𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒
𝑟1𝑀𝑜𝑢𝑡𝑒𝑟𝑆1

  𝑎𝑛𝑑 |𝐻2|𝑟1𝐿𝑒𝑓𝑓

=
2Φ2𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒

𝑟1𝑀𝑜𝑢𝑡𝑒𝑟𝑆2
 

 

Therefore, �𝐻2
𝐻1
�
𝑟1

= 2𝑆1
𝑆2

Φ2𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒

Φ1𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒
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Appendix 1: Units and Definitions 

Magnetic field strength is one of two ways that the intensity of a magnetic field can be 

expressed. Technically, a distinction is made between the magnetic field strength H, 

measured in Amperes per meter (A/m), and magnetic flux density B, measured in 

Newton per Ampere-meters (N/Am), also called Tesla (T). In SI units, B is measured 

in Tesla (symbol: T) and correspondingly the magnetic flux is measured in Weber 

(symbol: Wb) so that a flux density of 1 Wb/m2 is 1 T. The SI unit of Tesla is 

equivalent to (Newton·second)/(Coulomb·meter)=Vs/m2.  In Gaussian-cgs units, B is 

measured in Gauss (symbol: G). (The conversion is 1 T = 10000 G. The H-field is 

measured in Amperes per meter (A/m) in SI units, and in Oersteds (Oe) in cgs units. 

As a further matter of potential confusion, we note that in more recent text books and 

in lectures at the Universität Hamburg, B is called “magnetic field” while H is called 

“magnetizing field”. One reason is that in the theory of relativity B and E are 

transformed into each other, i.e. they are of the same nature. 
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