

Ultrafast Beams and Applications

04-08 July 2022, CANDLE, Armenia

Ultrashort pulsed electron beam irradiation induced immune response in animal models

Gohar Tsakanova

Institute of Molecular Biology NAS RA CANDLE Synchrotron Research Institute Yerevan, Armenia

Laser Driven AREAL Facility

Biological effects of

Ultrashort pulsed electron beam irradiation

Mechanisms involved in radiation damage and subsequent radiation response

Animal Experiments

Animal Experiments

Animal Experiments

Tsakanova et al., IJMS, 2021

Animal Experiments

Animal Experiments

Animal Experiments

Erythroid cell populations in bone marrow samples

Basophilic Erythroblasts

Animal Experiments

Two Photon Imaging of Oxidative Stress in rat living RBCs

Animal Experiments

The effect of electron beam exposure on Antioxidant system of rats

Example of Study Design

Pre-irradiation preparations

From several days to several weeks

From several hours to several days

Post-irradiation analyses and procedures From several weeks to several months, years

Laser Driven AREAL Facility

LABORATORY OF EXPERIMENTAL BIOLOGY

Main Molecular Biology Lab

Cell Culture Lab

Animal Surgery Lab

Experiment Types

Laboratory Main Activities

Long-term multidisciplinary projects:

1) Effect of low-energy ultrashort pulsed laser driven electron beam irradiation on whole body and glioblastoma in rat models, which is going in collaboration with the Yerevan State University (Yerevan, Armenia) and DESY (Hamburg, Zeuthen, Germany).

2) Effect of ultrashort pulsed electron beam irradiation on bacteria which is going in collaboration with the Yerevan State University (Yerevan, Armenia);

3) Radio-enhancing, radioprotective and/or neuroprotective effect of newly synthesized metal compounds on cancer and neuronal cell cultures conducted in collaboration with Rostock University (Rostock, Germany) and University California San Francisco (San Francisco, CA, USA);

4) Immune system, inflammation and synaptic plasticity in ischemic stroke using patients' and healthy volunteers' blood DNA and plasma samples to find biomarkers for targeted therapy and individualized medicine by genomics and proteomics approaches, as well as using *in vivo* two-photon approaches in rats, which is going in collaboration with the Aarhus University, Department of Biomedicine (Aarhus, Denmark) and Aalborg University (Aalborg, Denmark).

5) Drug discovery study of natural antiaging compounds (pharmacognosy) in rat models and human blood cells in collaboration with Broad Institute of MIT and Harvard (Cambridge, MA, USA);

6) Biosimulation studies of the dose distribution of ultrashort pulsed electron beam irradiation within the organism and studies of the effects of radiation on molecular structures.

Our Collaborations

N

Fluorescence intensity 00

Tsakanova et al., Biomed Optics Express, 2017

Tsakanova et al., Biomed Optics Express, 2020

Experiments on human aging

Group	Young age group	Middle aged group	Elderly group
Number of participants (n)	20	20	20
Age range (years)	20-40	40-60	60>
Gender (Male/Female)	10/10	10/10	10/10

	Percentage of living cells (%); M ± SEM			
Age Groups Treatment groups	Young (n=20)	Middle aged (n=20)	Elderly (n=20)	
Intact RBCs	100 ± 0.000	100 ± 0.000	99.96 ± 0.075	
RBCs + Extract 0.03 μg/mL	100 ± 0.000	100 ± 0.000	100 ± 0.000	
RBCs + Extract 0.04 μg/mL	99.91 ± 0.061	100 ± 0.000	100 ± 0.000	
RBCs + Extract 0.08 μg/mL	99.9 ± 0.078	100 ± 0.000	100 ± 0.000	
RBCs + Extract 0.16 µg/mL	99.9 ± 0.064	100 ± 0.000	100 ± 0.000	
$RBCs + H_2O_2$	99.96 ± 0.037	100 ± 0.000	100 ± 0.000	
RBCs + H ₂ O ₂ + Extract 0.03 µg/mL	100 ± 0.000	100 ± 0.000	100 ± 0.000	
RBCs + H ₂ O ₂ + Extract 0.04 μg/mL	99.94 ± 0.046	100 ± 0.000	99.95 ± 0.049	
RBCs + H ₂ O ₂ + Extract 0.08 μg/mL	100 ± 0.000	100 ± 0.000	100 ± 0.000	
RBCs + H ₂ O ₂ + Extract 0.16 µg/mL	100 ± 0.000	100 ± 0.000	99.94 ± 0.065	

Tsakanova et all, Exp Gerontol, 2021

Ongoing experiments

Brain Research in Animals

Speckle Imaging of blood flow in deep brain

Two-photon imaging of neuronal structures

Ischemic Stroke Brain Cancer – Glioblastoma

Dr. Violetta Dr. Elina

Dr. Gohar Tsakanova

Arakelova Mickayel

Matevosyan

Seda Kristine Gasparyan Harutyunyan Karapetyan Mikayelyan

Ayvazyan

Dr. Gohar Tsakanova

Arakelova

Dr. Nelly Babayan

Dr. Ruzanna Grigoryan

Ayvazyan

Sargsyan

Dr. Arsen Arakelyan

Prof. Zaven Karalyan

Prof. Vasili Tsakanov

Dr. Arsham Yeremyan

Dr. Bagrat Grigoryan

Dr. Zohrab Amirkhanyan

Vardanyan

Ms. Anna

Ayvazyan

Dr. Ashot

Mr. Hakob Davtyan

Prof. Klaus Dr. Hans-Christian Floettmann Wille

Dr. Stepan Tatikyan

THANK YOU FOR ATTENTION

Two-Photon Laser Scanning Microscopy

0.0001 nm 0.01 nm	10 nm 1	000 nm 0.01 cm	1 cm 1 m	100 m
Gamma rays X-rays	s Ultra- violet	Infrared	Radio waves Radar TV FM	AM

Laser Sourse

- Diode-pumped Yb:KGW ultrafast oscillator ("t-pulse", Amplitude Systems, France)
- The laser generates a high-repetition-rate (50 MHz) train of ultrashort (240 fs) pulses of quasi-monochromatic (~5 nm bandwidth) light at 1030 nm wavelength.
- The output average power of the oscillator is 1.1 W (energy per pulse ~22 nJ) which is too high for safe imaging of the samples.
- The power of the excitation is therefore regulated using a PC-controlled power attenuation kit placed in the beam path to maintain final power of 300 mW at the sample.