

Application of tunable-delay, ultrashort double pulses for materials processing and THz generation

Ultrafast Beams and Applications UBA-22 04-08 July, 2022

Presenter: Arsham Yeremyan

Laboratory of Photon Beams & Optics, CANDLE

Outline

Tunable-delay pulse pair generation on AREAL laser

as a tool for fundamental studies and applications

Current Experiments

- Generation of e-bunch pairs and application for irradiation of thin films and glasses
- Study of dynamics of glass laser processing and microfabrication
- Application for air-plasma THz generation experiments

Summary

Temporal shaping of ultrashort-pulses

Methods for generation of waveforms are actively studied and applied in parallel with development of femtosecond laser systems

Many Techniques

Variety of shapes

13 July 2022

Temporal shaping of ultrashort-pulses

Delay line for pulse doubling on AREAL laser

□ Fundamental studies (dynamics of ultrafast processes, plasma physics...)

- Coherent laser control (atomic and nonlinear optical processes, charge motions in semiconductors, chemistry...)
- generation and applications of e-bunch doublets and structured e-bunches
- Materials processing (laser processing, irradiation...)

Other....

Applications of tunable-delay double pulses

Current experiments at CANDLE

- Generation of e-bunch pairs and structured beams; effect of irradiation on semiconductor thin films and glasses
- Study of dynamics of laser-induced modifications in glasses; Effects on 3D (bulk) micro-processing
- Driving and optimization of dynamics of laser-induced air plasma for THz generation

Generation of e-bunch pairs and structured beams; effect of irradiation on semiconductor thin films and glasses

Project: "Effect of ultrashort electron and photon bunches on surface structure and optical properties of thin-film coatings and glasses"

Features of ultrashort-bunch electron irradiation

- Relative contribution from "*direct*" (close to the particle trajectory) and "*long-range*" interactions in energy-losses changes at high-flux, ultrashortbunch irradiation: contribution from long-range interactions increases at shorter duration of e-bunch at a given flux;
- Local redistribution of formed defects and chemical bonds in the target due to the change in dynamics of different relaxation paths;
- Physicochemical reactions of the charged and excited particle occur at durations 10⁻¹³—10⁻⁸ sec → influence of secondary effects are suppressed when irradiating with picosecond or shorter pulses

Thus, irradiation effects are expected to depend on both e-bunch duration and temporal shape (modulation) \rightarrow additional control parameter (in addition to energy and flux)

Tunable-delay e-bunch pairs

phase scan by optical path variation

Control and reference phase with fixed laser pulse Other technical applications?!

Bunch 1+Bunch 2

Parameter	Value
Laser pulse measured delay, \boldsymbol{t}_{d}	20 ps
Laser pulse duration, t_1,t_2	$t_1 = t_2 = 550 \text{ fs}$
Laser pulse energies, E1, E2	40.17 µJ, 40.7 µJ (+-1%)
e-Bunch charges (optimized), Q1, Q2	83 pC, 72 pC
e-Bunch charges (optimized for Q1)	83 pC, 48 pC
Phase difference optimized for Q1 and Q2	78°-95°=-17°
e-Bunch energy (E1)	~ 2MeV

deposition/irradiation/characterization experiments

- □ Only a slight structural modification: *change of grain size*
- Optimal deposition regimes to be defined for homogeneous films
- Proper irrad. dose range to be defined
- Effect of bunch temporal shape

0.5 µm

Laser processing of transparent glasses

Effect of time-domain pulse shaping

Physical mechanisms underlying glass modification during ultrashort-pulse processing are not fully understood:

 Complex excitation-relaxation dynamics, involving multitude (competing) processes in different time-scales:

- material-dependent thermodynamic relaxation (e.g. fused silica vs borosilicate BK7)
- Pulse shaping in time domain can be exploited to adjust the energy delivery rate to the transient states; and for efficiency of energy deposition

Laser processing of transparent glasses

Effect of double-pulse laser irradiation

See also presentation by M. Sargsyan, this session

Experiments

- Space-selective irradiation by single doublets; variable pulse delay, different contrasts
- Study of dynamics by measuring the transmittance change after irradiation
- optical microscopy images and comparison, damage stady

Main aims

- multiphoton excitation-relaxation dynamics, laser-induced damage/breakdown mechanisms in the time-scale 1—50 ps, at near-threshold intensities
- Exploit the DL and uFAB scanning parameters as a tool for driving and optimization of micro-processing for quality fabrication

Laser processing of transparent glasses

Effect of double-pulse laser irradiation

Important observations

- Incubation effects and decrease of double-pump damage threshold compared to single-pulse treatment
- ✓ The first laser pulse induces a large concentration of defects in the material lattice that modifies the interaction with the subsequent pulse

Practical meaning

- Method for real-time determination of optical breakdown/damage threshold from transmittance measurements and optical microscopy
- Possibility of higher-resolution (smaller feature size) fabrication:
 Decrease of feature size due to the inhomogeneous excitation by first pulse

THz generation from laser-induced air plasma

Air plasma as a popular THz source: ponderomotive forces on photoexcited electrons due to the density gradient; transient emission depending on the dipole direction

- \circ Gas ionization at intensities > 10¹² W/cm², easily achieved by current laser systems
- No limitation on pump intensities (no concern of crystal damage, etc.)
- Limited conversion efficiency (mainly, due to the electron density saturation and laser intensity clamping effects)
- **Approaches to enhance the efficiency**: two-color generation, HV electric bias, etc. See presentation by M. Sukiasyan, this session

Effect of double-pump optical excitation

- nonstationary enhancement of nonlinearity
- Relatively weaker first pulse for ionization

Pulse delay can be optimized to get the highest signal

Summary

Tunable-delay, ultrashort double pulses as an experimental tool for materials processing and optimization of THz generation from laser induced plasma

- Temporally shaped (structured) e-bunches for irradiation experiments
- Method for fundamental dynamics studies and improvement of laser processing of glasses
- Potential application for enhancement of efficiency of THz generation from laser-induced air plasma

Thank you