An innovative low energy ERL merger

A. Bacci (INFN-Mi) on behalf of BriXSinO project team

Ultrafast Beams and Applications 04-08 July 2022, CANDLE, Armenia

Index

- BriXSinO ERL project, the origin
- > Why an ELR
- Low energy injectors/mergers Critical aspects
- BriXSinO Low energy injector
 - The axis symmetric part (the boster)
 - BriXSinO Dispersive path design with GIOTTO IA code
 - Literature works Analytical approach
 - IA GIOTTO code Numerical approach
 - o <u>RotnSlice</u> a new GIOTTO tool for <u>ASTRA disperion evaluation</u>

-----BriXSinO INJECTOR Alternative application-----BriXSinO INJECTOR Alternative application-----

> <u>ultra narrow ultra short bunches</u> production foreseen for DLA injection.

BriXSinO ERL project, the origin (1/2)

Technical Design Report

The BriXSinO Layout

Maximum Energies
✓ TPTW acceleration up to 80 MeV
✓ ERL WP up to 45 MeV

Why an ERL (1/2)

flow-chart & race-track ERL

Why an ERL (2/2) – Further considerations

Previous two decades WW Labs focused on beam quality to prove the principia

e. g. LCLS-I or Flash (DESY) - driven by photoinjector at 10 – 50 – 100 Hz Nowadays, the request is the FLUX or Rep. Rate, in FEL, ICS, Colliders etc ...

Low energy injectors Critical aspects

A MUST is Push the beam brightness @ maximum values AN INJECTOR GAME

BriXSinO Low energy injectors (1/2)

A performing GUN Boosting few MeVs

250 – 350 KeV DC-gun - no edge performances - reliable & cheep

Two sub-harmonic bunchers 650 MHz - boost @ 4.5MeV (10 MeV (booster & main LINAC @ 1.3GHz) capability for others). $-V_{\rm ph} \rightarrow \beta = 0.740 \& \beta = 0.906$ Different RF injection phases acceleration & compression Velocity bunching low σ_F by RF curvature - longer $\lambda \rightarrow$ Longer bunches Cigar-like distrib. \rightarrow low emittances Soler bids Quadr poles Dipoles DC – gun ~ 300 keV buncher buncher **Booster Cryostat** A low-energy space-charge N. 3 cavities: two-cells 1.3 GHz dominated dog-leg or Merger 650 MHz 650 MHz

3 two-cells SC cavity:

BriXSinO Low energy injectors (2/2)

BriXSinO Dispersive path design with GIOTTO AI code (1/4)

To design a Dipoles path Preserving Beam Quality Huge Peak Brightness A Space-Charge S-C issue!

high brightness @ Low energy ↓ S-C regime + Dipoles i.e. Dispersion ↓ NON Linear Correlated BD We use a genetic IA code

IF no S-C regime it is linear geometry; achromatic lattice design MATRIX CODES: Trace-3D, Elegant, MAD, etc. ...

Literature works on S-C Dispersive paths (1/3)

Problem addressed in a few papers, one of the most interesting: NIM- A 557 (2006) 165-175

Merger designs for ERLs $\stackrel{\text{\tiny{theter}}}{\to}$

Vladimir N. Litvinenko^{a,*}, Ryoichi Hajima^b, Dmitry Kayran^a

^aBrookhaven National Laboratory, Upton, NY 11973, USA ^bJapan Atomic Energy Research Institute, Tokai-mura, Ibaraki 319-1195, Japan

Available online 16 November 2005

The paper considers the effects of:

Transvers S-C Fources TSCF Longitud. S-C Fources LSCF

consider some ERL machines: TJNAF Jefferson Lab, BINP Novosivirsk, Particularly JAERI Japan Atomic Energy Institute

Literature works on S-C Dispersive paths (2/3)

[3] Y.S. Derbenev, et al., TESLA-95-05, 1995; B.E. Carsten, PRE 54 (1996) 838

Literature works on S-C Dispersive paths (3/3)

BriXSinO Dispersive path design with GIOTTO AI code (1/5)

We decided to go straight by using OUR IA Optimization code GIOTTO We modify bit GIOTTO & Developed a new code capable to use ASTRA to design dispersive paths

The recipe for solving numerically the problem is:

 A full 3D tracking code for a S-C BD; <u>ASTRA</u> code [1] is the perfect!
 An algorithm to cope with NON-Linear problems; USING ASTRA as SOLVER. <u>GIOTTO</u> [2] is perfect!
 Add to ASTRA the capability to design Dispersive Paths: We developed a post processor the uncorrelated (un-rotate) astra-beams traveling in slope

direction and that computing η and η' , as all the others main parameters, <u>RotnSlice code</u>.

[1] K. Floettmann, A Space charge TRacking Algorithm, https://www.desy.de/~mpyflo/[2] A. Bacci, M. Rossetti Conti, at al. Giotto: A genetic code for demanding beam-dynamics optimizations

RotnSlice post-pro (1/2)

In Astra after a dipole: bunch rotation; not the CoSyS

- Computes eta_x, etaP_x, eta_y, etaP_y and other beam paramiters.
- Straightens tilted bunches (e.g. passed throught dipole fields).
- Rotates bunches by given angles.
- Performs bunch slice analysis or to compute Trace3D code inputs.
- Performs single-bunch analysis in comb trains.

Angles are computed by <Px>/<Pz> and <Py>/<Pz> OR imposed by the User

This Code is useful to compute fitness functions, based on eta parameters, in the GIOTTO software (e.g. dispersion closure after dispersive paths). Also enables GIOTTO to optimize comb beam dynamics

Different WORKING MODES: ** 1 ** Bunch slice analysis: />RotnSlice_05 <astra_file> [N_slclice]

-Generates <an_out_xx.txt> beam parameters file with eta, eta_prime xx is the astra run index

-If N_slclice = 1 it returns values for the whole bunch and also values in Trace3D format

-If N_slclice is not specified it means N_slclice=1

-If N_slclice > 1 the slice analysis is performed

** 2 ** Elaborate a list of Astra's bunch distributions: />RotnSlice_05 <List_of_file.txt>

-Generates <an_out_xx.txt> for every file into the list

* 3 ** Bunch rotation by an User defined angle: <RotnSlice_05 <astra_file> <output_file> <(theta_x,theta_y)>

-Generates <output_file>, an Astra distribution that propagate in the direction (theta_x,theta_y) [rad]. It is a fortran complex format theta_x>0 means z_versor rotating versus x-axis theta_y>0 means z_versor rotating versus y-axis

** FURTHER CAPABILITIES **:

Optional input file <RnS_Opt_in.txt> to be added in working folders -Contains the NAMELIST "&optional_par" to change following variables

VARIABLE freq [MHz] |type |default real 2856.0d6

: |meaning RF for lon

RF for long-emit [rad-keV] (Trace3D format)

RotnSlice post-pro (2/2)

	list.txt - Blocco note	RotnSlice	ile_analys	is_2.txt - Blocco note	e							
File	Modifica V		File Modifi	ca Visualizza								
File Bri Bri Bri Bri Bri Bri Bri Bri Bri Bri	Modifica V Xs-inj4.0000.0 Xs-inj4.0009.0 Xs-inj4.0019.0 Xs-inj4.0028.0 Xs-inj4.0028.0 Xs-inj4.0047.0 Xs-inj4.0047.0 Xs-inj4.0047.0 Xs-inj4.0047.0 Xs-inj4.0047.0 Xs-inj4.0047.0 Xs-inj4.0085.0 Xs-inj4.0085.0 Xs-inj4.0104.0 Xs-inj4.0104.0 Xs-inj4.0123.0 Xs-inj4.0123.0 Xs-inj4.0123.0 Xs-inj4.0123.0 Xs-inj4.0123.0 Xs-inj4.0123.0 Xs-inj4.0151.0 Xs-inj4.0161.0 Xs-inj4.0161.0 Xs-inj4.0180.0 Xs-inj4.0189.0 Xs-inj4.0199.0	isua isua <th>FileModifiz_lab[m]0.55000E+010.55400E+010.55400E+010.56200E+010.56600E+010.57400E+010.57800E+010.58200E+010.58600E+010.59400E+010.59400E+010.59400E+010.60600E+010.61000E+010.61400E+010.61800E+010.62200E+010.6200E+010.63000E+01</th> <th><pre>sig_x[mm] 0.89665E+00 0.8750E+00 0.8750E+00 0.87906E+00 0.87143E+00 0.85968E+00 0.85968E+00 0.82486E+00 0.78185E+00 0.78185E+00 0.74187E+00 0.74187E+00 0.74187E+00 0.70897E+00 0.69839E+00 0.69839E+00 0.69839E+00 0.68694E+00 0.68694E+00 0.67245E+00 0.66854E+00 0.66508E+00 0.66210E+00</pre></th> <th><pre>sig_y[mm] 0.89702E+00 0.88789E+00 0.87948E+00 0.87188E+00 0.86613E+00 0.86613E+00 0.86018E+00 0.82537E+00 0.78236E+00 0.74242E+00 0.70953E+00 0.70953E+00 0.69332E+00 0.68762E+00 0.68238E+00 0.67324E+00 0.67324E+00 0.66937E+00 0.66596E+00 0.66596E+00 0.66302E+00</pre></th> <th><pre>sig_z[mm] 0.19068E+01 0.19039E+01 0.19011E+01 0.18983E+01 0.18954E+01 0.18901E+01 0.18901E+01 0.18892E+01 0.18892E+01 0.18891E+01 0.18897E+01 0.18918E+01 0.18930E+01 0.18953E+01 0.18955E+01 0.18977E+01 0.18989E+01 0.18989E+01 0.18989E+01 0.18901E+01</pre></th> <th>e_x[um] 0.14977E+01 0.14797E+01 0.14626E+01 0.14460E+01 0.14283E+01 0.14257E+01 0.14159E+01 0.14159E+01 0.13875E+01 0.13688E+01 0.13688E+01 0.13688E+01 0.13588E+01 0.13556E+01 0.13594E+01 0.13504E+01 0.13482E+01 0.13463E+01 0.13447E+01</th> <th>e_y[um] 0.15083E+01 0.14907E+01 0.14740E+01 0.14579E+01 0.14579E+01 0.14385E+01 0.14291E+01 0.14299E+01 0.14041E+01 0.13838E+01 0.13976E+01 0.13779E+01 0.13775E+01 0.13689E+01 0.13665E+01 0.13645E+01 0.13610E+01</th> <th>Beta_x[m] 0.38970E+01 0.38644E+01 0.3857E+01 0.38120E+01 0.37983E+01 0.37515E+01 0.37515E+01 0.37269E+01 0.37441E+01 0.36097E+01 0.36097E+01 0.34912E+01 0.34153E+01 0.32474E+01 0.32474E+01 0.32148E+01 0.31862E+01 0.31614E+01</th> <th>Beta_y[m] 0.38729E+01 0.38393E+01 0.38096E+01 0.37848E+01 0.37697E+01 0.37224E+01 0.37115E+01 0.35757E+01 0.35757E+01 0.35635E+01 0.34601E+01 0.34601E+01 0.32924E+01 0.32924E+01 0.32165E+01 0.31845E+01 0.31564E+01 0.31322E+01</th> <th>etaX[m] 0.56695E-03 0.55231E-03 0.53657E-03 0.51506E-03 0.45857E-03 0.43157E-03 0.94568E-03 0.94568E-03 0.91515E-03 -0.14904E-04 -0.40433E-04 -0.12981E-03 -0.17120E-03 -0.18467E-03 -0.18467E-03 -0.21296E-03 -0.22599E-03 -0.23818E-03 -0.24980E-03 -0.26079E-03 -0.27112E-03</th> <th>etaX_p -0.55760 -0.56702 -0.56890 -0.56890 -0.49570 -0.62920 -0.28669 -0.20329 -0.21470 -0.9528 -0.1016 -0.7953 -0.3016 -0.3016 -0.2904 -0.2781 -0.2666 -0.2593 -0.2505 -0.2407</th>	FileModifiz_lab[m]0.55000E+010.55400E+010.55400E+010.56200E+010.56600E+010.57400E+010.57800E+010.58200E+010.58600E+010.59400E+010.59400E+010.59400E+010.60600E+010.61000E+010.61400E+010.61800E+010.62200E+010.6200E+010.63000E+01	<pre>sig_x[mm] 0.89665E+00 0.8750E+00 0.8750E+00 0.87906E+00 0.87143E+00 0.85968E+00 0.85968E+00 0.82486E+00 0.78185E+00 0.78185E+00 0.74187E+00 0.74187E+00 0.74187E+00 0.70897E+00 0.69839E+00 0.69839E+00 0.69839E+00 0.68694E+00 0.68694E+00 0.67245E+00 0.66854E+00 0.66508E+00 0.66210E+00</pre>	<pre>sig_y[mm] 0.89702E+00 0.88789E+00 0.87948E+00 0.87188E+00 0.86613E+00 0.86613E+00 0.86018E+00 0.82537E+00 0.78236E+00 0.74242E+00 0.70953E+00 0.70953E+00 0.69332E+00 0.68762E+00 0.68238E+00 0.67324E+00 0.67324E+00 0.66937E+00 0.66596E+00 0.66596E+00 0.66302E+00</pre>	<pre>sig_z[mm] 0.19068E+01 0.19039E+01 0.19011E+01 0.18983E+01 0.18954E+01 0.18901E+01 0.18901E+01 0.18892E+01 0.18892E+01 0.18891E+01 0.18897E+01 0.18918E+01 0.18930E+01 0.18953E+01 0.18955E+01 0.18977E+01 0.18989E+01 0.18989E+01 0.18989E+01 0.18901E+01</pre>	e_x[um] 0.14977E+01 0.14797E+01 0.14626E+01 0.14460E+01 0.14283E+01 0.14257E+01 0.14159E+01 0.14159E+01 0.13875E+01 0.13688E+01 0.13688E+01 0.13688E+01 0.13588E+01 0.13556E+01 0.13594E+01 0.13504E+01 0.13482E+01 0.13463E+01 0.13447E+01	e_y[um] 0.15083E+01 0.14907E+01 0.14740E+01 0.14579E+01 0.14579E+01 0.14385E+01 0.14291E+01 0.14299E+01 0.14041E+01 0.13838E+01 0.13976E+01 0.13779E+01 0.13775E+01 0.13689E+01 0.13665E+01 0.13645E+01 0.13610E+01	Beta_x[m] 0.38970E+01 0.38644E+01 0.3857E+01 0.38120E+01 0.37983E+01 0.37515E+01 0.37515E+01 0.37269E+01 0.37441E+01 0.36097E+01 0.36097E+01 0.34912E+01 0.34153E+01 0.32474E+01 0.32474E+01 0.32148E+01 0.31862E+01 0.31614E+01	Beta_y[m] 0.38729E+01 0.38393E+01 0.38096E+01 0.37848E+01 0.37697E+01 0.37224E+01 0.37115E+01 0.35757E+01 0.35757E+01 0.35635E+01 0.34601E+01 0.34601E+01 0.32924E+01 0.32924E+01 0.32165E+01 0.31845E+01 0.31564E+01 0.31322E+01	etaX[m] 0.56695E-03 0.55231E-03 0.53657E-03 0.51506E-03 0.45857E-03 0.43157E-03 0.94568E-03 0.94568E-03 0.91515E-03 -0.14904E-04 -0.40433E-04 -0.12981E-03 -0.17120E-03 -0.18467E-03 -0.18467E-03 -0.21296E-03 -0.22599E-03 -0.23818E-03 -0.24980E-03 -0.26079E-03 -0.27112E-03	etaX_p -0.55760 -0.56702 -0.56890 -0.56890 -0.49570 -0.62920 -0.28669 -0.20329 -0.21470 -0.9528 -0.1016 -0.7953 -0.3016 -0.3016 -0.2904 -0.2781 -0.2666 -0.2593 -0.2505 -0.2407
Bri Bri Bri	Xs-inj4.0200.0 Xs-inj4.0208.0 Xs-inj4.0217.0		0.63400E+01 0.63800F+01	0.65958E+00 0.65753F+00	0.66055E+00 0.65855F+00	0.19013E+01 0.19025F+01	0.13434E+01 0.13422F+01	0.13596E+01 0.13584F+01	0.31405E+01 0.31238F+01	0.31121E+01 0.30960F+01	-0.28075E-03 -0.28976F-03	-0.2299
Line	ea 1, colo 100%	W	Linea 4. colonn	a 17							100%	v

Linea 4, colonna 17

BriXSinO Dispersive path design with GIOTTO AI code (2/4)

GIOTTO with the Genetic approach used 15 GENES or knobs to solve the dispersive path:						
Quad:	1-2-3-4-5-6					
Cavity inj. Phases:	1-2-3-4-5					
Solenoid fields:	2-3-4-5					

BriXSinO Dispersive path design with GIOTTO AI code (3/5)

$$\sum_{i=1}^{n} \frac{\sigma_i^2}{\sigma_i^2 + (Par_i - Taget_i)^2} \cdot A_i$$

Par _i	Target _i	σ_i	screen	0.
$\boldsymbol{\varepsilon}_{\boldsymbol{\chi}}$	0.0	6	3	0.
$\boldsymbol{\varepsilon}_{y}$	0.0	6	3	0.
η', η'	0.0	0.01	3	0.
$oldsymbol{\eta},oldsymbol{\eta}'$	0.0	0.01	2	
η,η'	0.0	0.01	1	170.7

🔛 Gnuplot (window i — 🗆 🗙						
🗊 🟝 📇 🗶 🗯 🔍 🔍	1					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-					
ي: 170.771, -0.104684						

BriXSinO Dispersive path design with GIOTTO AI code (4/4)

Some main ERL WW projects Table of comparison

	Inj. Energy [MeV]	Qb [pC]	Injector emit.	<l> mA</l>	Gun
Perle (Orsay, France)	7	500	6	20	CD gun 350 KeV
bERLinPro (Berlin <i>,</i> Germani)	7	77	<1	4/100	SRF photoinjector 2.3 MeV
C-beta (USA-Cornell)	7-8	77	0.7 – 1	Up to 100	DC gun 350 KeV
BriXSinO	4.5	100	~1	Up to 5	<u>DC gun</u> <u>250 keV</u>

BriXSinO ultra short ultra narrow bunches

BriXSinO ultra short ultra narrow bunch

Conclusions

> We <u>studied & proven</u> a very <u>low energy</u> <u>ERL injector/merger new layout</u>

- Energy quasi two times lower than C-beta & bERLinPro
- A very good emittance considering the 250 keV gun

<u>RotnSlice</u> tool for ASTRA+GIOTTO dispersive paths design

> Ultra short ultra narrow bunches production (still ongoing)

Thanks for your attention!