

Helical motion in resistive structures

M. I. Ivanyan, B. Grigoryan, B. Sargsyan, A. Grigoryan¹, CANDLE SRI, 0040 Yerevan, Armenia, K. Floettmann, F. Lemery, Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
 ¹also at Yerevan State University, 1 Alex Manoogyan, 0025, Yerevan, Armenia

Presenter

M. Ivanyan CANDLE SRI, Yerevan, Armenia

06.07.2022

GEOMETRY OF THE PROBLEM

The radiation field of a particle moving on a helical trajectory in a cylindrical waveguide with resistive walls is calculated. The deformation of the energy spectrum and damping of radiation as a result of the finite conductivity of the walls is investigated.

The radiation of a point particle moving along a helical trajectory in a waveguide with walls of finite conductivity is considered. The practical significance of this problem lies in the study of the possibility of combining a helical undulator with a cylindrical waveguide. In this case, the continuous spectrum of undulator radiation is transformed into a discrete one, which makes it possible to single out one mode as a source of monochromatic radiation.

IDEAL WAWEGUIDE

With an appropriate selection of parameters, it is possible to create conditions for the dominance of one mode, i.e., the mode containing most of the emitted energy. In this case, we are talking about the possibility of creating a powerful monochromatic radiation source.

Contribution of each mode to the radiation energy spectrum

in waveguide-undulator structures

M.I. Ivanyan et al, Laser Phys. 30 (2020) 115002 (8pp)

$$W_{mn}^{TM} = \frac{q^2 \omega_{nm}^2}{2\pi\varepsilon_0 c^2} \frac{J_n^2(\alpha_{nm} a/b)}{\alpha_{nm}^2 J_n'^2(\alpha_{nm})} \qquad W_{nm}^{TE} = \frac{q^2 \omega_{nm}^2}{2\pi\varepsilon_0 c^2} \frac{\beta_{\perp}^2 a^2}{b^2} \frac{J_n'^2(\alpha'_{nm} a/b)}{f^2(\alpha'_{nm}) J_n^2(\alpha'_{nm})} \frac{\alpha'_{nm}^2}{\alpha'_{nm}^2 - n^2} \\ \omega_{nm} = n\omega_0 + V\gamma_z^2 a^{-1} \left[n\beta_z \beta_{\perp} + \sqrt{n^2 \beta_{\perp}^2 - \gamma_z^{-2} x_{nm}^2 a^2/b^2} \right] \qquad \text{Singularity at } f(\alpha'_{nm}) = 0$$

Cases of dominance of one of the modes at different values of K

Complete Solution **REAL RESISTIVE WAVEGUIDE Particular Solution Common Solution Basic harmonics** Solution of homogeneous $\vec{e} = \begin{cases} \vec{e}_{H} = \left\{ (\alpha r)^{-1} n, H_{n}^{(1)}(\alpha r), j H_{n}^{(1)'}(\alpha r), 0 \right\} exp(j\psi_{n}) \\ \vec{e}_{I} = \left\{ (\alpha r)^{-1} n, J_{n}(\alpha r), j J_{n}'(\alpha r), 0 \right\} exp(j\psi_{n}), \end{cases}$ Solution in free space **Maxwell equations with** for given charges and currents undefinite amplitudes e_H ϵ_{1}, μ_{1} \vec{e}_H $\alpha = \begin{cases} \alpha_1 = \sqrt{\omega^2 \varepsilon_1 \mu_1 - k^2} & \text{in metal} \\ \alpha_0 = \sqrt{\omega^2 / c^2 - k^2} & \text{in vacuum} \end{cases}$ \vec{e}_I \vec{e}_I ε_0, μ_0 \vec{e}_H b ε_0, μ_0 \vec{e}_H ϵ_{1}, μ_{1} $\boldsymbol{\psi}_{n} = \boldsymbol{k}(\boldsymbol{z} - \boldsymbol{v}\boldsymbol{t}) + \boldsymbol{n}(\boldsymbol{\varphi} - \boldsymbol{\omega}_{0}\boldsymbol{t})$ $\mathbf{k} = (\boldsymbol{\omega} - \boldsymbol{n}\boldsymbol{\omega}_0)/V$ Matching fields using boundary Matching the tangential compoconditions on a surface *r* = *a*, nents of full field on the inner Field presentation Introduction of the coefficient χ_n . wall at *r* = *b* $(\vec{H}_H - \vec{H}_I) \times \vec{e}_r = \chi_n \vec{J}$ $\vec{E}_{H,t} = \vec{E}_{I,t}$ $\vec{E} = \vec{E}^{TM} + \vec{E}^{TE}$ $\vec{H} = \vec{H}^{TM} + \vec{H}^{TE}$ $\varepsilon_0(\vec{E}_H - \vec{E}_I) \cdot \vec{e}_r = \chi_n q$ $\vec{H}_{H.t} = \vec{H}_{I.t}$ $\vec{H}^{TM} = B^{TM} \vec{e}$ $\vec{E}^{TM} = A^{TM} rot \vec{e}$ Determination of the coefficient χ_n is performed by $\vec{E}^{TE} = A^{TE} \vec{e}$ $\vec{H}^{TE} = B^{TE} rot \vec{e}$ comparison with the existing solution for an ideal waveguide

1. Particular Solution. Solution in free space for given charges and currents

Charge and current dencities

$$\rho(r,\varphi,z,t) = q \, \frac{\delta(r-a)}{\sqrt{ra}} \delta(\varphi - \omega_0 t) \delta(z - Vt)$$
$$\vec{j}(r,\varphi,z,t) = (\omega_b a \vec{e}_{\varphi} + V \vec{e}_z) \rho(r,\varphi,z,t)$$

Matching fields using boundary conditions on a surface r = a. Introduction of the coefficient χ_n , currents \vec{j}^{TM} , \vec{j}^{TE} and charges ρ^{TM} , ρ^{TE} , responsible for the generation of TM and TE modes

1)
$$E_{H,z}^{TM} - E_{J,z}^{TM} = 0 \quad TM \text{ modes}$$
2)
$$-E_{H,\varphi}^{TM} + E_{J,\varphi}^{TM} = 0$$
3)
$$-H_{H,\varphi}^{TM} + H_{J,\varphi}^{TM} = q \chi_n j_{n,z}^{TM}$$
4)
$$\varepsilon_0 (E_{H,r}^{TM} - E_{J,r}^{TM}) = q \chi_n \rho_n^{TM}$$
5)
$$H_{H,r}^{TM} - H_{J,r}^{TM} = 0$$

 $\rho_n^{TM} + \rho_n^{TE} = 1$ $j_z^{TM} + j_z^{TE} = V$ Determined from the compatibility
conditions of the equations
included in the systems. 1) $-E_{H,\varphi}^{TE} + E_{J,\varphi}^{TE} = 0$ **TE modes** 2) $H_{H,z}^{TE} - H_{J,z}^{TE} = q \chi_n j_{n,\varphi}^{TE}$ 3) $-H_{H,\varphi}^{TE} + H_{J,\varphi}^{TE} = q \chi_n j_{n,z}^{TE}$ 4) $\varepsilon_0 (E_{H,r}^{TE} - E_{J,r}^{TE}) = q \chi_n \rho_n^{TE}$ 5) $H_{H,r}^{TE} - H_{J,r}^{TE} = 0$

 $j_{\varphi}^{TE} = \omega_0 a \qquad \rho_n^{TE} = n\omega_0 \omega/c^2 \alpha_0^2$ $j_z^{TE} = kn\omega_0/\alpha_0^2 \qquad j_z^{TM} = V - j_z^{TE}$

1. Particular Solution. Solution in free space for given charges and currents

Amplitudes and fields

$$A_{n,J}^{0,TM} = -jq \frac{\pi}{2} \frac{a\chi_n}{\alpha_0 c^2 \varepsilon_0} (V\omega - c^2 k) H_n^{(1)}(\alpha_0 a)$$

$$A_{n,H}^{0,TM} = -jq \frac{\pi}{2} \frac{a\chi_n}{\alpha_0 c^2 \varepsilon_0} (V\omega - c^2 k) J_n(\alpha_0 a)$$

$$B_{n,J}^{0,TM} = -j\varepsilon_0 \omega A_{n,J}^{0,TM}, \ B_{n,H}^{0,TM} = -j\varepsilon_0 \omega A_{n,H}^{0,TM}$$

$$A_{n,J}^{0,TE} = jq \frac{\pi}{2} \frac{a^2 \chi_n \omega \omega_0}{c^2 \varepsilon_0} H_n^{(1)}(\alpha_0 a),$$

$$A_{n,H}^{0,TE} = jq \frac{\pi}{2} \frac{a^2 \chi_n \omega \omega_0}{c^2 \varepsilon_0} J_n'(\alpha_0 a)$$

 $B_{n,J}^{0,TE} = -j A_{n,J}^{0,TE} / \omega \mu_0, B_{n,H}^{0,TE} = -j A_{n,H}^{0,TE} / \omega \mu_0$

$$\vec{E}_{n}^{0,TM} = \begin{cases} \vec{E}_{H,n}^{0,TM} \\ \vec{E}_{J,n}^{0,TM} \end{cases} = \begin{cases} A_{H,n}^{0,TM} rot \ \vec{e}_{H}, & r > a \\ A_{J,n}^{0,TM} rot \ \vec{e}_{J}, & r < a \end{cases}$$

$$\vec{H}_{n}^{0,TM} = \begin{cases} \vec{H}_{H,n}^{0,TM} \\ \vec{H}_{J,n}^{0,TM} \end{cases} = \begin{cases} B_{H,n}^{0,TM} \vec{e}_{H}, & r > a \\ B_{J,n}^{0,TM} \vec{e}_{I}, & r < a \end{cases}$$

$$\vec{E}_{n}^{0,TE} = \begin{cases} \vec{E}_{H,n}^{0,TE} \\ \vec{E}_{J,n}^{0,TE} \end{cases} = \begin{cases} A_{H,n}^{0,TE} \vec{e}_{H}, & r > a \\ A_{J,n}^{0,TE} \vec{e}_{J}, & r < a \end{cases}$$

$$\vec{H}_{n}^{0,TE} = \begin{cases} \vec{H}_{H,n}^{0,TE} \\ \vec{H}_{J,n}^{0,TE} \end{cases} = \begin{cases} B_{H,n}^{0,TE} rot \ \vec{e}_{H}, \ r > a \\ B_{J,n}^{0,TE} rot \ \vec{e}_{J}, \ r < a \end{cases}$$

Complete Solution

2. Matching the tangential components of full field on the inner wall at *r* = *b*

$$\vec{E}^{in} = \vec{E}^{1,TM} + \vec{E}^{1,TE} + \vec{E}^{0,TM} + \vec{E}^{0,TE}$$
$$\vec{H}^{in} = \vec{H}^{1,TM} + \vec{H}^{1,TE} + \vec{H}^{0,TM} + \vec{H}^{0,TE}$$
$$\vec{E}^{out} = \vec{E}^{2,TM} + \vec{E}^{2,TE}, \ \vec{H}^{out} = \vec{H}^{2,TM} + \vec{H}^{2,TE}$$

$$\vec{E}^{1,TM} = A_n^{1,TM} rot \, \vec{e}_J, \ \vec{H}^{1,TM} = B_n^{1,TM} \vec{e}_J, \qquad \vec{E}^{2,TM} = A_n^{2,TM} rot \, \vec{e}_H, \ \vec{H}^{2,TM} = B_n^{2,TM} \vec{e}_H, B_n^{1,TM} = -jA_n^{1,TM} \varepsilon_0 \omega, \qquad B_n^{2,TM} = -jA_n^{2,TM} \varepsilon_1 \omega,$$

$$\vec{E}^{1,TE} = A_n^{1,TE} \vec{e}_J, \quad \vec{H}^{1,TE} = B_n^{1,TE} rot \vec{e}_J, \qquad \vec{E}^{2,TE} = A_n^{2,TE} \vec{e}_H, \quad \vec{H}^{2,TE} = B_n^{2,TE} rot \vec{e}_H, B_n^{1,TE} = -j A_n^{1,TE} / \mu_0 \omega. \qquad B_n^{2,TE} = -j A_n^{2,TE} / \mu_1 \omega.$$

$$\begin{cases} \vec{E}_t^{in} = \vec{E}_t^{out} \\ \vec{H}_t^{in} = \vec{H}_t^{out} \end{cases} at \mathbf{r} = \mathbf{b}$$

Complete Solution

Amplitudes

 $\widehat{A} = \widehat{A}_1 + \widehat{A}_2$ $\widehat{A}_{1,2} = \left\{ A_{n_{12}}^{1,TM}, A_{n_{12}}^{1,TE}, A_{n_{12}}^{2,TM}, A_{n_{12}}^{2,TE} \right\}$ $A_{n_1}^{1,TM} = jq \frac{\pi}{2} a \chi_n C_u \tilde{J}_n \frac{W_{\varepsilon\mu}}{\sigma_0 c^2 \varepsilon_0 n},$ $A_{n_1}^{1,TE} = q a \chi_n k n \mu_0 \frac{C_u \alpha_1^2 \alpha_{01} H_n^2 \tilde{J}_n \omega^2}{\alpha_0 c^2 D},$ $A_{n_1}^{2,TM} = -qa\chi_n b \frac{C_\omega \alpha_0^2 \alpha_1^2 \tilde{J}_n I_\mu \omega^2}{\alpha_0 c^2 D},$ $A_{n_1}^{2,TE} = qa\chi_n kn\mu_1 \frac{C_\omega \alpha_1 \alpha_{01}^2 H_n J_n \tilde{J}_n \omega^2}{\alpha^2 p},$ $A_{n_2}^{1,TM} = -qa^2\alpha_1^2\alpha_{01}\chi_n \frac{\tilde{J}'_n H_n^2 kn\omega\omega_0}{c^2 \epsilon_0 D},$ $A_{n_2}^{1,TE} = -jq \frac{\pi}{2} \chi_n ka^2 \omega \omega_0 \tilde{J}'_n \frac{W_{\mu\varepsilon}}{c^2 \varepsilon_0 p}$ $A_{n_2}^{2,TM} = -qa^2 \chi_n kn\omega\omega_0 \alpha_0 \alpha_1 \alpha_{01} \frac{\tilde{J}'_n H_n J_n}{c^2 s_0 p},$ $A_{n_2}^{2,TE} = q\mu_1 \chi_n ba^2 \omega^3 \omega_0 \alpha_0^2 \alpha_1^2 \frac{\tilde{J}'_n I_{\varepsilon}}{c^2 \varepsilon_0 p}$

Designations

$$\begin{split} \tilde{J}_{n} &= J_{n}(\alpha_{0}a), \tilde{H}_{n} = H_{n}^{(1)}(\alpha_{0}b), \qquad \alpha_{01} = \alpha_{0}^{2} - \alpha_{2}^{2}\\ &I_{\varepsilon}\\ &I_{\mu} \\ &= -\alpha_{1}J'_{n}H_{n} \begin{cases} \varepsilon_{0}\\ \mu_{0} \\ \end{pmatrix} + \alpha_{0}J_{n}H'_{n} \begin{cases} \varepsilon_{1}\\ \mu_{1} \\ \end{cases}\\ &Y_{\varepsilon}\\ &Y_{\mu} \\ \end{pmatrix} = -\alpha_{1}\tilde{H}'_{n}H_{n} \begin{cases} \varepsilon_{0}\\ \mu_{0} \\ \end{pmatrix} + \alpha_{0}\tilde{H}_{n}H'_{n} \begin{cases} \varepsilon_{1}\\ \mu_{1} \\ \end{cases}\\ &W_{\varepsilon\mu}\\ \end{pmatrix}\\ &= k^{2}n^{2}\alpha_{01}^{2}H_{n}^{2}J_{n}\tilde{H}_{n} - b^{2}\alpha_{0}^{2}\alpha_{1}^{2} \begin{cases} Y_{\varepsilon}I_{\mu}\\ Y_{\mu}I_{\varepsilon} \\ \end{pmatrix} \omega^{2}\\ &D = k^{2}n^{2}\alpha_{01}^{2}H_{n}^{2}J_{n}^{2} - b^{2}\alpha_{0}^{2}\alpha_{1}^{2}I_{\varepsilon}I_{\mu}\omega^{2}\\ &D \text{ispersion equation}\\ &D(\omega) = 0\\ \text{has discrete complex roots}\\ &, \qquad \omega = \omega_{nm}, \qquad k = \frac{\omega - n\omega_{0}}{V} \end{split}$$

Transition to an ideal waveguide:

 $\varepsilon_1 \to \infty, \qquad \mu_1 = \mu_0$

Amplitudes, obtained for common solution (full field matching at *r* = *b*):

$$A_{n}^{1,TM} = A_{n_{1}}^{1,TM} = jq \frac{\pi}{2} \frac{a\chi_{n}C_{u}H_{n}^{(1)}(\alpha_{0}b)J_{n}(\alpha_{0}a)}{\alpha_{0}c^{2}\varepsilon_{0}J_{n}(\alpha_{0}b)}$$
$$A_{n}^{1,TE} = A_{n_{2}}^{1,TE} = -jq \frac{\pi}{2}\omega\omega_{0} \frac{a^{2}\chi_{n}H_{n}^{(1)'}(\alpha_{0}b)J_{n}'(\alpha_{0}a)}{c^{2}\varepsilon_{0}J_{n}'(\alpha_{0}b)}$$

Amplitudes, obtained for particular solution (free space field matching at *r* = *a*):

$$A_{n,J}^{0,TM} = -jq \frac{\pi}{2} \frac{a\chi_n}{\alpha_0 c^2 \varepsilon_0} C_u H_n^{(1)}(\alpha_0 a) \qquad A_{n,J}^{0,TE} = jq \frac{\pi}{2} \frac{a^2 \chi_n \omega \omega_0}{c^2 \varepsilon_0} H_n^{(1)}(\alpha_0 a) A_{n,H}^{0,TM} = -jq \frac{\pi}{2} \frac{a\chi_n}{\alpha_0 c^2 \varepsilon_0} C_u J_n(\alpha_0 a) \qquad A_{n,H}^{0,TE} = jq \frac{\pi}{2} \frac{a^2 \chi_n \omega \omega_0}{c^2 \varepsilon_0} J_n'(\alpha_0 a)$$

 $C_u = V\omega - c^2 k$

Full field, radiated in ideal waveguide

$$\vec{E}_n^0 = \vec{E}_n^{0,TM} + \vec{E}_n^{0,TE}$$
, $\vec{H}_n^0 = \vec{H}_n^{0,TM} + \vec{H}_n^{0,TE}$

$$\vec{E}^{,TM} = A_n^{1,TM} rot \, \vec{e}_J + \begin{cases} A_{H,n}^{0,TM} rot \, \vec{e}_H, & r > a \\ A_{J,n}^{0,TM} rot \, \vec{e}_J, & r < a \end{cases}$$

$$\vec{H}^{TM} = B_n^{1,TM} \vec{e}_J + \begin{cases} B_{H,n}^{0,TM} \vec{e}_H, & r > a \\ B_{J,n}^{0,TM} \vec{e}_I, & r < a \end{cases}$$

$$\vec{E}^{,TE} = A_n^{1,TE} \vec{e}_J + \begin{cases} A_{H,n}^{0,TE} \vec{e}_H, & r > a \\ A_{J,n}^{0,TE} \vec{e}_J, & r < a \end{cases} \qquad \vec{H}^{,TE} = B_n^{1,TE} rot \vec{e}_J + \begin{cases} B_{H,n}^{0,TE} rot \vec{e}_H, & r > a \\ B_{J,n}^{0,TE} rot \vec{e}_J, & r < a \end{cases}$$

Expansion of the resulting solution in a series in terms of eigenfunctions of an ideal waveguide. Comparison with existing solution

 $J_n(bj_{nm}) = 0$

TM modes. Poles at $\alpha_0^2 = j_{nm}^2$, additional pole at $\alpha_0^2 = 0$ in J_r obtained solution. Existing solution

$$\begin{split} \tilde{E}_{nm,z}^{a,TM} &= -j2q \frac{a\chi_{n}C_{u}}{b^{2}} \frac{J_{n}(aj_{nm})}{(\alpha_{0}^{2} - j_{nm}^{2})J_{n-1}^{2}(bj_{nm})} J_{n}(j_{nm}r)F \\ \tilde{E}_{nm,r}^{a,TM} &= -j2q \frac{C_{u}}{b^{2}c^{2}\varepsilon_{0}} \frac{J_{n}(aj_{nm})}{(\alpha_{0}^{2} - j_{nm}^{2})J_{n-1}^{2}(bj_{nm})} J_{n}(rj_{nm})F \\ \tilde{E}_{nm,r}^{a,TM} &= j2q\mu_{0} \frac{ka\chi_{n}C_{u}}{\alpha_{0}^{2}b^{2}} \frac{j_{nm}J_{n}(aj_{nm})J_{n}'(j_{nm}r)}{(\alpha_{0}^{2} - j_{nm}^{2})J_{n-1}^{2}(bj_{nm})}F \\ \tilde{E}_{n,m\varphi}^{a,TM} &= j2q\mu_{0} \frac{ka\chi_{n}C_{u}}{\alpha_{0}^{2}b^{2}} \frac{J_{n}(aj_{nm})J_{n}(j_{nm}r)}{(\alpha_{0}^{2} - j_{nm}^{2})J_{n-1}^{2}(bj_{nm})}F \\ \tilde{E}_{n,m\varphi}^{a,TM} &= j2q\mu_{0} \frac{ka\chi_{n}C_{u}}{\alpha_{0}^{2}b^{2}r} \frac{J_{n}(aj_{nm})J_{n}(j_{nm}r)}{(\alpha_{0}^{2} - j_{nm}^{2})J_{n-1}^{2}(bj_{nm})}F \\ \tilde{E}_{nm,\varphi}^{a,TE} &= k_{nm,r}^{b,TE} = \tilde{A}_{nm}\frac{jn}{kr}J_{n}(\nu_{nm}r), \quad \tilde{A}_{nm} = \frac{j2q\mu_{0}Q_{n}\nu_{nm}^{a}\omega\omega_{b}J_{n}^{(a\nu_{nm})}}{(n^{2} - b^{2}\nu_{nm}^{2})J_{n}^{2}(b\nu_{nm})}, \quad \tilde{Q}_{n} = \begin{cases} a\chi_{n} - for \ obtained \ solution \\ 1 - for \ existing \ solution \\ 1 - for \ existing \ solution \end{cases} \\ \tilde{E}_{nm,\varphi}^{a,TE} &= \tilde{E}_{nm,\varphi}^{b,TE} &= \tilde{A}_{nm}J_{n}^{'}(\nu_{nm}r), \\ H_{nm,z}^{a,TE} &= \tilde{B}_{nm}J_{n}(\nu_{nm}r) \end{cases}$$

Chosen form of function χ_n :

$$\chi_n = a^{-1} \left\{ 1 - 4^n \Gamma^2(n) n \frac{J_n(\alpha_0 b) J'_n(\alpha_0 b)}{(\alpha_0 b)^{2n-1}} \right\},$$

$$\Gamma(n) = (n-1)!,$$

$$\chi_n \rightarrow a^{-1}$$
 at $\alpha_0 \rightarrow j_{nm}(\nu_{nm})$

$$\chi_n
ightarrow lpha_0^2 a$$
 at $lpha_0
ightarrow 0$

Numerical examples

Spectral distribution of dipole mode (n = 1) radiation in a copper waveguide; forward (right) and back (left) radiation.

a = 1cm, l = 8cm, K = 0.42, E = 15MeV,n = 1

 $\begin{bmatrix} 100 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 2 \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ f = \omega/2\pi \ [THz] \end{bmatrix}$

Damping factors of TE (blue) and TM (red) modes at resonant frequencies for n = 1.

Spectral distribution (space-time domain, forward direction, $z - Vt \rightarrow 0$) of first three multipoles (n = 1,2,3) stored radiation energy for TE (top) and TM (bottom) modes in a copper (red, dased) and ideal (black, solid) waveguides.

The case of proximity of the resonant and critical frequencies

Spectral distribution (space-time domain) of dipole mode (n = 1) stored radiation energy for TE modes in a copper (red, dashed) and ideal (black, solid) waveguides.

Damping factors of TE modes at resonant frequencies for n = 1.

The dependence of the accumulated energy density on the distance to the particle, TEmodes, n = 1; radiation forward (black lines) and backward (red lines).

Dielectric loaded resistive waveguide. Damping factors

CONCLUSION

The obtained exact solution, in contrast to the case of an ideal waveguide, has no singularities at the critical (TE modes, space-time domain) and resonant (TE and TM modes, frequency domain) frequencies. Along with the greater prevalence of TE modes (due to higher attenuation of TM modes) than in an ideal waveguide, the maximum value of the amplitude of the dominant TE mode is limited due to the finite conductivity of the walls.

The solution presents a realistic picture of radiation and creates wide opportunities for research on optimizing the parameters of the structure, depending on its purpose.

The solution can be extended to two-layer and multilayer waveguides

THANK YOU!