

CANDLE SRI PBO Laboratory Yerevan State University Department of Physics

The Effect of Ultrashort Pulse Shaping on Regimes of Laser Processing of a Glass

Presenter: Maksim Sargsyan

Ultrafast Beams and Applications

Outline

♦Glass Processing

- Application of Ultrafast Lasers
- ▼ Advantages of Using Temporally Shaped Ultrashort Pulses
- Experimental Techniques for Determination of a Single Pulse Induced Optical Breakdown Threshold (OBT)

Double Pulse Irradiation Effect on OBT

Dependence on Pulse Duration

Summary

Glass Processing Application of Ultrafast Lasers

Potential applications in photonics, integrated optics, microfluidics among many others.

_ Fabrication of diffraction gratings, phase plates, waveguides, etc.

_ Glass drilling and cutting.

Advantages of Ultrafast Processing

- reduced heat affected zones improved quality and resolution of fabrication
- multiphoton absorption at a localized area in the volume of a transparent sample – high resolution 2D and 3D writing of micro- and nanostructures

Liao, Y., Song, J., Li, E., et al (2012). doi:10.1039/c2lc21015k

Chen GY, Piantedosi F, Otten D, et al. DOI: 10.1038/s41598-018-28631-3.

Ultrafast Beams and Applications

Glass Processing

Advantages of Using Temporally Shaped Ultrashort Pulses

The fabrication method also requires further improvement.

The possibility of effectively controlling the dynamic processes at picosecond and sub-picosecond time scales has triggered interest in temporal shaping methods.

Time scales of different complex processes caused by femtosecond laser irradiation

The modification threshold.. variation depending on fabrication parameters

N-BK7 – universal optical glasses widely used in optical manufacturing, optoelectronics, microwave technologies, integrated optics, etc.

Ultrafast Beams and Applications

Experimental Setup and Techniques

Setup allows real-time determination of threshold by selecting appropriate laser modulation, and scanning parameters.

Ultrafast Beams and Applications

04-08 July 2022, CANDLE, Armenia

1030 nm. 515 nm

Wavelengths

Single Pulse-Induced Optical Breakdown Threshold

Experimental Parameters

Wavelength	Pulse Duration	Repetition Rate	Scanning Speed	Spot Size
1030 nm	0.5 – 10 ps	100 Hz	1 mm/s	3 um

Optical Transmission Change

Optical Microscopy

PCM	۰	•		•	•			•	•	•	•		•			•			¢	•	a	a	•	38.35 J/cm ²
				•	•	۲	٠				•	۲			•		•		•	•	9		•	31.74 J/cm ²
	÷	•		3						æ	•		•	4	٠	a		a	æ					25.5 J/cm ²
		•	•	•						•			•					•	•					18.86 J/cm ²
	•		•					•					 •					•						16.2 J/cm ²
																								12.9 J/cm ²
																								9.94 J/cm ²
x400	z	-	-2	20	0	u	Im	٦		and the second														

Ultrafast Beams and Applications

Single Pulse-Induced Optical Breakdown Threshold

Experimental Parameters

Wavelength	Pulse Duration	Repetition Rate	Scanning Speed	Spot Size		
1030 nm	0.5 – 10 ps	100 Hz	1 mm/s	3 um		

Optical Transmission Change

Optical Microscopy

Ultrafast Beams and Applications

Double Pulse Irradiation Effect on the OBT The details of the experiment

Tunable relative timing: from 0 to 50 ps

Experimental Details

Delay between pulses: 1 - 21 ps Energy ratio of single doublet: 1:1 to 1:4

In all experiments, the energy of each pulse was below a single pulseinduced optical breakdown threshold.

Double Pulse Irradiation Effect on the OBT Results

Observation of the "pump & pump" effect of single-doublet irradiation

*Energy Ratio = Variable Energy Pulse: Fixed Energy Pulse

Ultrafast Beams and Applications

Dependence on Pulse Duration

Summary

- method of real-time determination of single and double pulse induced damage/optical breakdown threshold
- "pump & pump" effect was observed in tunable-delay single-doublet irradiation experiments
- double-pulse irradiation with a delay in the chosen range has the potential for practical application to find optimal laser processing regimes
- this processing technique is a useful tool to understand underlying fundamental physics at appropriate time scales

Thanks! Շնորհակալություն

Do you have any questions? maximsargsyan@asls.candle.am

DELTA uFab Microfabrication Station

Features	
Travel Range	100 x 100 mm (XY), 25 mm (Z)
Scanning Speed	up to 300 mm/s (XY), up to 5 mm/s (Z)
XYZ positioning accuracy	±50 nm

- High-grade optics to achieve nanoscale precision in both 2D and 3D processing
- Software for visualization of the machining process and direct control of sample motion hardware and pulse parameters

Ultrafast Beams and Applications