

CANDLE Project Status

V. Tsakanov

ESRF, 16-17 Dec 2020

Contents

- Introduction
- CANDLE project status
- Impedances and wakes
- Exit Scenario AREAL
- User case
- Outlooks

Introduction

A.I. Alikhanian

Construction of 6 GeV synchrotron (1967)

1971-1975 – Three Synchrotron Radiation Beamlines

Lab. of Radiation Solid State Physics

Lab. of Radiation Biophysics

Solid State Dept of Yerevan State Univ.

2002 – CANDLE Synchrotron Light Source Project

DBA lattice

- "CANDLE is a <u>world-class</u> project enabling <u>frontier</u> research in a whole spectrum of basic and applied sciences.
- <u>Excellent investment</u> from scientific-technical point of view.
- Strong user community will emerge as the facility is readied. From Panel Report

2015 Low ALPHA Mode

- Short pulse SR - Coherent THz Rad

Parameter	Original lattice	High emittance lattice	Low emittance lattice
α_0	2*10 ⁻³	2*10 ⁻⁵	$10^{-4} (2*10^{-5} \text{ is infeasible})$
α_1 (with/without sext. opt)	3*10 ⁻³	10^{-4} /-7.3*10 ⁻³	4*10 ⁻³ /6.3*10 ⁻³
Emittance (nm rad)	8.4	59	27
rms energy spread (%)	0.104	0.095	0.116
Momentum acceptance (%)	2.4	10	1.25

A.Sargsyan et al, JINST, 2015

2017

Low Emittance Ring

A.Sargsyan et al, NIM-A, 2017

Parameter	Original	Low emit. DBA	4BA	4BA+LGB
Circumference (m)	216	216	258	268.8
Number of periods	16	24	16	16
Straight section length (m)	4.8	4.4	4.2	4.4
Energy (GeV)	3	3	3	3
Emittance (nm rad)	8.4	5.2	1.1	0.435
Energy spread (%)	0.1	0.15	0.1	0.11
Overall mom. acc. (%)	2.4	2.1	3.9	2.6
Natural chrom. (hor./	- <mark>18.91</mark> /	-13.64/	-38.27/	-95.16/
vert.)	-14.86	-24.27	-26.04	-33.92
Betatron tunes (hor./	13.2/4.26	14.17/3.19	24.61/14.37	29.2/8.36

Low Emittance Ring – 0.45 nm

- Multi-Bend Achromat
- Combined function magnets
- Longitudinal Gradient Bends
- Anti-Bend magnets

Dynamic Aperture

$$\alpha(\delta) = \alpha_0 + \alpha_1 \delta + O(\delta^2)$$
$$\alpha_0 = 1.13 \cdot 10^{-4}$$
$$\alpha_1 = 2.15 \cdot 10^{-3}$$

Momentum acceptance of the new lattice 2.6%.

A.Sargsyan et al, NIM-A, 2017

Nonlinear Dynamics Optimization with multi-2019 objective particle swarm optimization algorithm

Parameter	Value
Circumference (m)	268.8
Lattice type	4BA
Number of periods	16
Straight section length (m)	4.4
Beam Energy (GeV)	3
Hor. emittance (nm rad)	0.435

Sext	Original [m ⁻³]	Optimized [m ⁻³]
SF1	110.1	113.7
SD1	-425.4	-406.3
SD2	-516.4	-544.4
SF2	313.2	347.8
AB1	-59.9	-75.5
AB2	211.6	166.9

X: (- 12 ; 7) mm Y: 5.7 mm

Vert. [mm]

A. Sargsyan et al, JINST, 2019

Wakes and Impedances

Laminated structures

Field Matching

M. Ivanyan et al, PRSTAB,17 2008

Q_n– Field Transformation Matrix of 1 layer

 $T=(E_z, E_{\theta}, B_z, B_{\theta})$ - vector of tang. Comp.

$$\mathbf{T}_{in} = \mathbf{Q}_{1} \cdot \mathbf{T}_{2} = \mathbf{Q}_{1} \cdot \mathbf{Q}_{2} \cdots \mathbf{Q}_{N} \cdot \mathbf{T}_{out}$$
$$\mathbf{Q} = \mathbf{Q}_{1} \cdot \mathbf{Q}_{2} \cdots \mathbf{Q}_{N}$$

European XFEL kicker

Longit impedance

Ceramic pipe coated with thin metallic film of **Titanium-Stabilized High Gradient Steel**.

A. Tsakanian et al, EPAC 2008,

Wakes and Impedances

Cu-NEG

Longitudinal Impedance

$$W_{\parallel}^{0}(s) = -\frac{Z_{0}c}{\pi a^{2}}e^{-\alpha s} \left[\cos(ks) - \frac{\alpha}{k}\sin(ks)\right]$$

$$\sigma_1 = 3 \cdot 10^4 \,\Omega^{-1} m^{-1}$$
$$\sigma_1 = 3 \cdot 10^5 \,\Omega^{-1} m^{-1}$$

 $k_0 = 1/\sqrt{2ad}$

Dispersion curves

Longitudinal Wake functions

M. Ivanyan, et al, PRSTAB, 2014 M. Ivanyan, et al, NIM (A), 2016

2010 DESY-PSI- CANDLE collaboration Workshop

Experts meeting with RA Prime – Minister

Exit Scenario

- State-of-the-art facility
- Multiple applications
- Small facility + Lim invest.
- Scientific & Techn asset
- Training and Educ. Center
- International cooperation
- Strategic Highlightts

Ultrafast Science and Technology

AREAL facility

AREAL-5 MeV

Energy	2.5- 5 MeV
Time structure	0.4 – 8 ps
Emittance	~ 1.2um
Charge	300 pC
Repetition rate	1-50 Hz

MicroFab

Biomedicine

V.Tsakanov et al, NIM (A), 2016

Advanced Technologies

Ultrafast electronics

Ultrahigh vacuum

Precise machining

Radiophysics System

Diagnostics & Control

Magnet system

2015-2020 – Experimental program Genetics

Proposals -28 Institutions -12 Scientists - 96

Molecular Physics

Microelectronics

Solid State Physics

Yerevan State Univ Engineering Univ. Agrarian Univ. Yerevan Phys. Inst Inst. Mol. Biology Inst. Phys. Research Inst of Biotechnology CANDLE Institute Inst of Med Biophysics (Russia)

Oncology

Biology

New materials

Microfabrication

Bio-Medical application

Ultrafast Electron Irradiation effects on DNA

DMA damage and repair (In vitro)

- N. Babayan et al, J. of Radiation Research, 2017.
- N. Babayan et al, J. of Radiol & Rad. Therapy, 2018.
- R. Aroutiounian et al, Molecular Citogenetics, 2019
- A. Pepoyan et al, Annals of Microbiology, 2019
- A. Osipov, Intern J Mol Sciences, 2020
- G. Tsakanova, Biomedical Optics Express, 2020

Time (s)

Material Sciences

AREAL Highlights – 2018-2022

Middle IR FEL

Sat. length 2.1 – 3.2 m Pulse energy 60-100 mJ Power= 40 – 60 MW

Wavelength -2.5 - 30µm

Outlooks on R&D

 CANDLE full potential – 0.45 nm emittance
Isochronous Ring
AREAL SASE FEL
Advanced Radiation Sources (Dielectric, Plasma ...)

Thank You !