Status of impedance modelling and collective effects for PETRA IV

S. A. Antipov

20.06.24

Many thanks I. Agapov, Y.-C. Chae, C. Cortés García, F. Lemery, C. Li, A. Rajabi, I. Zagorodnov

Ultrafast Beams and Applications, Yerevan, Armenia

Circumference	2304 m
Energy	6 GeV
Emittance	Hor.: 20 pm, vert.: 2 pm
Diffraction limit	10 keV
Coupling	0.2
Energy spread	0.9x10 ⁻³
Mom. compaction	3.33x10 ⁻⁵
Nat. bunch length	2.3 mm
Tunes	135.18, 86.27
Energy loss / turn (ID closed)	4.30 MeV
Chromaticity	5, 5
RF voltage (MC)	8 MV
Harmonic number	3840 (500 MHz)
Max. total current	200 mA

(c)

(up) × (cu)

PETRA IV light source: Schedule

Courtesy S. Klumpp, PETRA IV project support office

Estimated budget: 1.3 BEuro

Foreseen filling patterns

Timing

More exotic filling patterns

More exotic filling patterns

Goal: Ensure sufficient stability margin for all modes of operation

A. Chao, Physics of collecitve beam instabilities in particle accelerators, Willey 1993

- Need an accurate model of EM wakefields
 - From 1 kHz (long-range multi-turn wakes, CB instabilities)
 - To 0.1 THz (short-range wakes, microbunching)

Goal: Ensure sufficient stability margin for all modes of operation

- Main sources of wakefields
 - Resistive wall
 - Higher order modes
 - Beam-ion interaction

- Stabilizing mechanisms
 - Chromaticity (dQ/dp)
 - Active multibunch feedback
 - Synchrotron radiation damping
- Want at least a 100% safety margin at the design stage

Non-evaporative Getter (NEG) Coating

- Provides distributed pumping as well as desorption barrier
 - More uniform pressure profile
 - Smaller # vacuum pumps needed
 - Simpler machine design
- 1-µm-thick TiZrV and Zr films are being investigated
- Might have a significant effect on the machine impedance
 - Planning to coat all 2.3 km of vacuum chambers

Courtesy R. Širvinskaite

Longitudinal impedance / 1 m (Simulation in IW2D code)

Investigation of NEG coatings

- EM transmission measurement
 - 75-110 GHz range
 - 50-cm-long samples
 - Round 20 mm diam. Cu pipes

Vacuum flanges

 RF contact is ensured by a special spring

- RF spring
- Model in CST Microwave Studio

- Additional high frequency modes are trapped in the gap if the RF contact is not perfect
 - 100 μm gap causes problems

Machine protection collimators

- Horizontal and vertical collimators are installed to
 - Protect the insertion devices
 - Localize the beam (Touschek) losses
- High efficiency = high β-function + small gaps = large impedance
- Mostly geometric contribution from the change in the aperture
 - Need to optimize the tapered transition
- Design studies ongoing
 - Analytical estimates to guide the process
 - Numerical of simplified geometries to verify

G. Stupakov, PRST AB 10, 094401 (2007)

Beam position monitor shielding

- Synchrotron radiation from bending magnets lands on the monitors
 - Irradiation of the buttons and thermal load
 - Especially problematic at fast corrector locations where SS and CU chambers meet
- Design studies ongoing
 - Analytical estimates to guide the process
 - Numerical of simplified geometries to verify

Impedance

- Building the impedance model:
 - Including hardware as it is being designed
 - Geometric impedance simulated up to 100 GHz
- Resistive wall contribution dominates

TABLE III. Impedance contributions at chromaticity 5			
Impedance contribution	Value $(M\Omega/m)$	Share (%)	
RW round chambers	0.32	23	
RW ID chambers	0.64	46	
Geometric impedance	≤ 0.4	≤ 30	

Beam dynamics tools

- NHT Vlasov solver
 - Semi-analytical
 - Fast (laptop)
 - Fixed long. distribution
 - SB + CB problem
 - Idealized linear model
 - SR damping extra

 $\frac{\Delta \omega}{\omega_s} X = \underbrace{SX} - \underbrace{iZX} - \underbrace{igFX} + \underbrace{CX},$

Discretized longitudinal distribution

Beam dynamics tools

- NHT Vlasov solver
 - Semi-analytical
 - Fast (laptop)
 - Fixed long. distribution
 - SB + CB problem
 - Idealized linear model
 - SR damping extra

 $\frac{\Delta \omega}{\omega_s} X = \underbrace{SX} - \underbrace{iZX} - \underbrace{igFX} + \underbrace{CX},$

Discretized longitudinal distribution

- ELEGANT tracking code
 - Multi-particle (10⁵ particles)
 - Slow (computing cluster)
 - Longitudinal + Transverse wakes
 - Single bunch only
 - Errors and aperture
 - SR & QE included

Example instability at high intensity

Leads to blow-up of the transverse beam size in ~1000 turns

High-charge Timing mode

- 14 nC in the stored bunch
- No apeture sharing (starts from noise)
- Chromaticity 5

Example instability at high intensity

Leads to blow-up of the transverse beam size in ~1000 turns

Example instability at high intensity

Leads to blow-up of the transverse beam size in ~1000 turns

RF straight section: Layout optimized to reduce the β -functions, # aperture transitions

RF straight section: Layout optimized to reduce the β -functions, # aperture transitions

Example: HOM at 1 GHz

- 24 cavities, $\beta = 20$ m, vertical plane, 1920 bunches, $Q_b = 1$ nC
- Feedback and chromaticity might be insufficient to stabilize

Must make sure the modes are well damped

S. Antipov, DESY-TEMF Meeting, TU Darmstadt, 20 Oct. 2022

Brightness mode: Vertical plane

S. Antipov, Transverse feedback is essential for the feasibility of the 200 mA Brightness mode 27

Timing mode: Vertical plane

S. Antipov, DESY-TEMF Meeting, TU Darmstadt, 20 Oct. 2022

28

Injection dynamics

Kicker-bump injection Multipole/Nonlinear kicker

Most 3GLS

ESRF-EBS

etc.

ELETTRA II

A A A A A

MAX IV

Soleil II

Sirius

etc.

Swap-out

ALS-U

APS-U

HEPS

etc.

Short pulse kicker (Aperture sharing, Long. Inj.)

SLS 2.0 Diamond II PETRA IV etc.

9

The optimum injection scheme may depend on each storage ring as well as the demands of the beamline users

* Free images from pixabay.com

M. Aiba, "A Review on Injection Schemes", FLS'23, Lucerne, 2023

Injected beam decoheres in several revolutions

No perturbation of the stored bunch observed

Timing mode example

- 8 nC in the stored bunch: 20, 2 pm
- 800 pC in the injected bunch: 20, 2 nm

Injected beam decoheres in several revolutions

No perturbation of the stored bunch observed

Timing mode example

- 8 nC in the stored bunch: 20, 2 pm
- 800 pC in the injected bunch: 20, 2 nm

Losses mostly happen in the stored beam

Can simulate 1 beam instead of 2

→ Y.-C. Chae, IPAC'07

Numerical example:

- 16 nC in the stored bunch ٠
- 800 pC in the injected bunch ٠
- Beam separation 6 mm ٠
- 200 000 macroparticles

a few losses on horizontal collimators

Losses mostly happen in the stored beam

Can simulate 1 beam instead of 2

→ Y.-C. Chae, IPAC'07

Numerical example:

- 16 nC in the stored bunch
- 800 pC in the injected bunch
- Beam separation 6 mm
- 200 000 macroparticles

Emittance might blow up to nm scale for high charge modes

Blow-up happens on time scales of ~1000 turns

- Chromaticity 5
- Multi-bunch FB not included

Impedance and stability summary

- Baseline scenarios are stable when using both feedback and chromaticity
 - Gain of \sim 1/100 turns seems to be sufficient with significant safety margin
 - Beam can be stabilized at 0 chromaticity beneficial for machine studies
- To guarantee transverse stability HOMs shall be damped below 55 k Ω /m
 - Otherwise, need to be carefully examined separately
- Ongoing work:
 - Refining the impedance model as the hardware is being designed
 - Iterating specifications on feedback controls

Community-wide interest in concepts to produce short bunches in rings

Future Light Sources Workshop, Luzern 2023: fls2023.vrws.de

Bunch compression with self-induced wakefields

https://uspas.fnal.gov/materials/19Knoxville/lec%206.pdf

- Can compress the beam!
 - First noted by A. Gerasimov, FERMILAB-FN-62XX (1994)
 - Because compressing with RF is inefficient

$$\sigma_t = \frac{\sigma_E}{\omega_0} \sqrt{\frac{2\pi E\alpha}{heV_{rf}|\cos\phi_s|}}$$

• Can be a single-mode structure, dielectric or corrugated

- Need $\sigma \sim \lambda$

Journal of Instrumentation

PAPER • OPEN ACCESS

Adiabatic bunch compression in storage rings from self wakes generated in Cherenkov waveguides S.A. Antipov¹, I. Agapov¹, I. Zagorodnov¹ and F. Lemery¹ Published 11 July 2023 • © 2023 The Author(s) Journal of Instrumentation, Volume 18, July 2023 Citation S.A. Antipov et al 2023 JINST 18 P07024 Doi 10.1088/1748-0221/18/07/P07024

Bunch compression with self-induced wakefields

- Example: 400 GHz structure for KARA low- α 1.3 GeV ring at KIT
 - Very short: only 30 cm
 - The gap adjusts the strength, not the frequency

- Closing the gap adiabatic bunch compression
 - +20% peak current
 - x10 beam spectrum at 0.1 THz

Thank you for your attention

Bunch lengthening due to 3rd harmonic RF and impedance

- Tracking in ELEGANT
 - 10⁵ macroparticles

Impedance

- Building the impedance model:
 - Including hardware as it is being designed
 - Geometric impedance simulated up to 100 GHz
- Resistive wall contribution dominates

Simple analytical estimate: Air-bag model

• At chromaticity 0:

$$\Gamma = \frac{M N_b r_0 c}{2 \gamma T_0^2 \omega_\beta} \Re Z(\omega')$$

- Lowest betatron sidebands: (23.4, 35.1 kHz)
- Growth times for full machine (M = 1920):
 (140, 80) revolutions
- Note: this is an upper bound

Couple-bunch growth times for different operation modes: no feedback, no synchrotron damping

Growth rates in horizontal (vertical) planes

Filling scheme	Q' = 0	Q' = 5
Brightness 4 ns, 200 mA	250 (160) turns	3 530 (2080) turns
Brightness 2 ns, 200 mA	250 (160) turns	3 130 (2050) turns
Timing 80 b., 80 mA	770 (270) turns	17 150 (9370) turns
Timing 40 b., 80 mA	640 (110) turns	8 720 (5310) turns
Timing 80 b. 200 mA	160 (100) turns	5 510 (2360) turns

SR damping ~3 000 turns

S. Antipov, DESY-TEMF Meeting, TU Darmstadt, 20 Oct. 2022

Conservative limits: All HOMs have the same frequencies

Longitudinal stability

Transverse stability

 $Z_{||}^{thresh}(f) = \frac{1}{f} \frac{1}{N_C} \frac{2EQ_s}{I_B \alpha_C \tau_s}$

 $Z_{x,y}^{thresh}(f) = \frac{1}{f_{rev}} \frac{1}{N_C} \frac{2E}{\beta_{x,y} I_B \tau_{x,y}}$

NHT Vlasov solver

- Physics:
 - Impedance: Single-bunch + couple-bunch modes
 - Chromaticity
 - Transverse feedback system (assumed ideal)

 $\frac{\Delta \omega}{\omega_s} X = \underbrace{SX} - \underbrace{iZX} - \underbrace{igFX} + \underbrace{CX},$

• Discretizing the longitudinal distribution on a set of air-bags

S. Antipov, DESY-TEMF Meeting, TU Darmstadt, 20 Oct. 2022