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Abstract
An exact solution for the radiation field of a particle in a helical

undulator, valid for an arbitrary point in space and an arbitrary particle

energy, was obtained by the partial domain method, generalized for the

case of a spiral motion of the particle. The interface between the regions is

a cylindrical surface containing the spiral trajectory of the particle. A

comparison is made with the existing solution, which is valid in the far

zone at high particle energies.
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𝐸𝑚,𝑇𝑀
0,𝑍

= −𝜈−2 rot 𝑅, 𝑍0𝐻𝑚,𝑇𝑀
0,𝑍

= 𝑗𝑘𝜈−2𝑅,

𝑍0𝐻𝑚,𝑇𝐸
0,𝑍

= −𝜈−2rot 𝑅, 𝐸𝑚,𝑇𝐸
0,𝑍

= −𝑗𝑘𝜈−2𝑅

𝑅 = Ԧ𝑒𝑧 × ∇𝑃𝑍, 𝑃𝑍 = 𝑍𝑚𝑒
𝑗 𝑚𝜑+𝑝𝑧−𝜔𝑡 , 𝑘 = Τ𝜔 𝑐

If 𝒁 = 𝑱, 𝒁𝒎 = 𝑱𝒎 𝝂𝒎𝒓 and if 𝒁 = 𝑯, 𝒁𝒎 = 𝑯𝒎
𝟏
𝝂𝒎𝒓 , where 𝐽𝑚 and 𝐻𝑚

1
are

the Bessel function and the Hankel function of the first kind; 𝑍0 = 𝜀0𝑐
−1 is the

impedance of free space and 𝜀0 is the dielectric constant of vacuum; 𝒑𝒎 and 𝝂𝒎 =

Τ𝝎𝟐 𝒄𝟐 − 𝒑𝒎
𝟐 are the longitudinal and transverse eigenvalues of the mth mode. In the

case of linear motion of the particle 𝑝𝑚 = Τ𝜔 𝑣 (𝑣 is the total velocity of the particle)

and 𝜈𝑚 = Τ𝑗𝜔 𝑣𝛾 (𝑗 is the imaginary unit), while for the helical motion 𝑝𝑚 =
Τ𝜔 −𝑚𝜔0 𝑉 (𝑉 is longitudinal component of the particle velocity) and

𝝂𝒎 = Τ𝝎𝟐 𝒄𝟐 − Τ𝝎−𝒎𝝎𝟎
𝟐 𝑽𝟐
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Boundary conditions on the cylindrical surface, 
containing particle trajectory
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−𝟏

Solutions for amplitudes
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Examining the components of the obtained expressions (3, 6) for the fields for

the TM and TE modes separately, we find that the transverse components have

a divergence of the order of 𝝂𝒎
−𝟐 at 𝝂𝒎 → 𝟎 (without taking into account the

features of the yet unknown function 𝝌𝒎) for arbitrary integer values 𝒎 > 𝟎,

but in their superposition (2) these singularities for 𝒎 > 𝟏 are mutually

compensated. For example, the radial magnetic TM and TE components in the

vicinity of 𝝂𝒎 = 𝟎 have singularities equal in magnitude and opposite in sign:

ቑ
𝓐𝒎

𝑰
𝑯𝒎,𝑻𝑴𝒓

𝟎,,𝑰
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= ቑ
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𝑰
𝑯𝒎,𝑻𝑬𝒓

𝟎,,𝑰

−𝓑𝒎
𝑰
𝑯𝒎,𝑻𝑬𝒓

𝟎,,𝑰

𝝂𝒎→ 𝟎

= 𝒋𝒎𝝌𝒎
𝒒

𝟐
𝒑𝒎𝝎𝟎

𝒓

𝒂

±𝒎−𝟏
𝝂𝒎
−𝟐

COUPLING OF TM AND TE MODES
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Only when 𝒎 = 𝟏 is the logarithmic divergence preserved (at 𝝂𝟏 = 𝟎).

So, for the radial electrical components:

ቑ
𝓐𝟏

𝑰
𝑬𝟏,𝑻𝑴𝒓

𝟎,,𝑰
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This divergence should be eliminated by an appropriate selection of the factor

𝝌𝒎. Note that the longitudinal components do not have any singularities. Thus,

TM and TE modes are mutually coupled and cannot be generated separately.
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𝒅𝑱 𝝎

𝒅𝝎
=
𝒒𝟐𝑵

𝟐𝜺𝟎𝒄
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𝑺𝒎
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𝟐 ෥𝒚𝒎 + 𝜷𝝋

𝟐 𝑱𝒎
′𝟐 ෥𝒚𝒎

𝑸𝒎 = 𝟒𝝅𝟑𝝌𝒎
𝟐 Τ𝒂𝟐𝝎 𝒄𝝂𝒎

෩𝑫𝒎 = 𝒎− Τ෥𝝎 𝜸𝒛
𝟐 , ෩𝑩𝒎 = 𝒎 𝒎− ෥𝝎

𝑺𝒎 = ෥𝝎෩𝑫𝒎 − ෩𝑩𝒎, ෥𝒚𝒎 =
𝜷𝝋

𝜷𝒛
𝑺𝒎,  

෥𝝎 = Τ𝝎 𝝎𝟎,

𝒅𝑰 𝝎

𝒅𝝎
=
𝑵𝒒𝟐𝑲𝟐෤𝒓

𝜺𝟎𝒄
෍

𝒎=𝟏

∞

𝒀𝒎෥𝒖 ෥𝜶𝒎
𝟐

𝒀𝒎 = 𝑱𝒎
′𝟐 ෥𝒙𝒎 + Τ෥𝜶𝒎 𝑲− Τ𝒎 ෥𝒙𝒎

𝟐𝑱𝒎
𝟐 ෥𝒙𝒎

෥𝜶𝒎
𝟐 = Τ𝒎 ෤𝒓 − 𝟏 − 𝑲𝟐, ෥𝒙𝒎 = 𝟐𝑲෤𝒓෥𝜶𝒎,

෤𝒓 = Τ𝝎 𝟐𝜸𝟐𝝎𝟎,

෥𝒖 𝒙 is a unit step function

RADIATION POWER SPECTRAL DENSITY DISTRIBUTION

New expression
Taken from: 
B. M. Kincaid, Journal of Appl. 

Phys., vol. 48, p. 2684, 1977. 

DETERMINATION OF 𝝌𝒎

Comparison
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A coincidence occurs at

𝜸 ≫ 𝟏 and 𝟐𝝎 ≫ 𝒎𝝎𝟎 with 𝑸𝒎 = 𝟏
Thus

𝝌𝒎 =
𝟏

𝟐𝒂𝝅 Τ𝟑 𝟐

𝒄𝝂𝒎
𝝎

Τ𝟏 𝟐

Kincaid’s formula has one remarkable property: it allows the spectra to depend on the generalized

parameter ෤𝒓 = Τ𝝎 𝟐𝜸𝟐𝝎𝟎, leaving only the parameter 𝑲 free. This is achieved in the approximation of

very high energies and far from frequencies that are multiples of the rotation frequency (𝟐𝝎 ≫ 𝒎𝝎𝟎).

New Formula, after substitution of the approximate expression for the longitudinal velocity

𝑽 = 𝒄 𝟏 − 𝜸−𝟐 𝟏 − 𝑲𝟐𝜸−𝟐 , 

is a refined version of Kincaid’s formula: in this case, the requirement for 𝜸 is relaxed and the

constraint 𝟐𝝎 ≫ 𝒎𝝎𝟎 is completely eliminated. This option with the artificial introduction of a

functional dependence on ෤𝒓, as in formula Kincaid’s formula , retains the parametric dependence on K,

while acquiring an additional parametric dependence on γ.
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b)

c)

Spectral distributions of the radiation energy density of a particle moving along a

spiral trajectory. The red dotted curve is calculated using Kincaid’s formula; the

black solid curves, calculated for three different values of γ, corresponds to New

formula; a) full spectrum; b), c) selected parts of the spectrum; 𝑲 = 𝟐; ෨𝑰 –

distributions normalized to Τ𝑵𝒒𝟐 𝜺𝟎𝒄 ; ෤𝒓 = Τ𝝎 𝟐𝜸𝟐𝝎𝟎.

NUMERICAL COMPARISON
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Transition to quasi-discrete spectrum

The allowed frequency regions of the spectrum of each mode are determined from
the condition 𝑺𝒎 > 𝟎 ,, which implies their narrowing as the longitudinal
propagation speed decreases:

𝒎

𝟏+ 𝜷𝒛
< ෥𝝎 <

𝒎

𝟏− 𝜷𝒛
In this case, the spectrum passes from continuous to fragmentary.

Spectral density of radiation energy distribution of a particle moving along a spiral trajectory at low longitudinal
velocities: 𝜷𝒛 = 𝟎. 𝟎𝟎𝟎𝟏𝜷𝜸 (red), 𝟎. 𝟎𝟎𝟎𝟓𝜷𝜸 (blue), 𝟎. 𝟎𝟎𝟏𝜷𝜸 (black); First (left) and tenth (right) harmonics.

Particle energy E=30MeV (γ≈58.71).
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CONCLUSION

The use of a cylindrical coordinate system directly related to the particle

trajectory made it possible to use the partial domain method for a uniform

description of radiation fields both near and far from the particle trajectory

and to take into account the discontinuity of the field components on the

cylindrical surface containing the particle trajectory, generalizing it to the case

of a helical motion of the particle.

The main results are: 1) For the radiation of a particle moving along a spiral

trajectory with a constant longitudinal velocity and a fixed rotation frequency,

expressions for the fields are obtained that are valid at any point in space.

2) The mutual compensation of singularities, present in TM and TE modes

with the same order, has been proven. 3) A refined formula for the distribution

of the spectral energy density of the radiation of a helical undulator was

obtained. 4) The principal possibility of sampling the emission spectrum of a

helical undulator has been demonstrated
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