Report on BD Milano group activities

A. Bacci (INFN-MI) on behalf of Milano Group

L. Serafini, A. Bacci, I. Drebot, A. Frazzitta, G. Harki, A. R. Rossi, M. Rossetti Conti, S. Samsam, V. Petrillo

Ultrafast Beams and Applications 17-22 June 2024, CANDLE, Armenia

Main BD Milano activities & the index

Activities in the frame of EuPRAXIA:

- -this morning A.R. Rossi talk] Plasma acceleration BD simulations — Plasma betatron radiation Plasma based devices: bending, ion channel laser, etc ...
- Matching line tuning from plasma to Undulator by GIOTTO
- EuPRAXIA injector tuning by GIOTTO (The COMB conf.)

GIOTTO simulations Optimizer code development

- Dielectric Laser Accelerators (DLA) (MICRON)
 - Woodpile TW cavity simulations
 - Sub-relativistic SLOT TW Cavity simulations –
- Magnetic Bottle trap by Symmetric ICS & -

BriXSinO ERL – Two pass acc. test facility

- GIOTTO applied to BriXSinO
- Low– Buncher VS frequency analysis
- HB₂TF news -
- HOMEN •
- Opt. FCC-ee positron capture line
- STAR ICS machine status report

[this morning – A.R. Rossi talk] -{tomorrow – A. Frazzitta talk]

[tomorrow, M. Rossetti Conti]

[this talk & tomorrow, G. S. Mauro] [this talk – index] -{this talk - index]

[tomorrow, L. Serafini]

-[tomorrow, M. Rossetti Conti] -{this talk - index] -{this talk - index]

[this talk – index]

Activities in the frame of EuPRAXIA:

- Plasma acceleration BD simulations
- Plasma betatron radiation
- Plasma based devices: bending, ion channel laser, etc ..
- Matching line tuning from plasma to Undulator by GIOTTC
- EuPRAXIA injector tuning by GIOTTO

GIOTTO simulations Optimizer code development -

- Dielectric Laser Accelerators (DLA) -
 - Woodpile TW cavity simulations -
 - Sub-relativistic SLOT TW Cavity simulations
- Magnetic Bottle trap by Symmetric ICS
- BriXSinO ERL Two pass acc. test facility
 - GIOTTO applied to BriXSinO
 - Low– Buncher VS frequency analysis
 - HB₂TF news
- > Opt. FCC-ee positron capture line
- STAR ICS machine status report

[this morning – A.R. Rossi talk] [this morning – A.R. Rossi talk] [tomorrow – A. Frazzitta talk]

[tomorrow, M. Rossetti Conti

[this talk & tomorrow, G. S. Mauro]
 [this talk – index]
 [this talk – index]

tomorrow, M. Rossetti Conti] this talk – index] this talk – index]

this talk – index]

this talk – index

The Woodpile DLA cavity (1D fields Ez(0,0) & Full 3D)

ASTRA On axis description from fields component $Ez_{0,0}$ Real and $Ez_{0,0}$ Im. 1D, the cavity doesn't have a transversal geometry defined

 $E_{tw} = \text{Real}(\text{Ez}) \cdot \cos(\omega t) + \text{Imag}(\text{Ez}) \cdot \cos(\omega t + 90^{\circ})^{4}$

Multi staging CASE: 9 cavities that means 18 maps – each other rotated 0° – 90° – 0° – 90° ...

Sub-relativistic SLOT TW Cavity simulations

[this talk – index]

Sub-relativistic co-propagating structure (slot DLA)

 $λ_{laser} = 2 \ \mu m$ i.e. $f = 1.4995 \cdot 10^{14} [1/s]$ $v_{ph} = f \cdot \lambda_c(z)$ $K_z = 2 \ pi / \lambda_c(z)$ From v_{ph} to e⁻ velocity (β) to e⁻ energy (K):

 $K = 0.511(1/\sqrt{1-\beta^2}) - 1)$

Fields in hard edge condition at start and end of the cavity. By the edge effect (typically focusing in acceleration), should be useful to introduce a coupling.

= 119 KeV

Normalized vector potential

The normalized vector potential, an important figure of merit for accelerator in non-relativistic acceleration regime is: $e E_0 \lambda$

$$\alpha = \frac{e E_0 \lambda}{2 \pi m c^2}$$

Slot DLA, of 300-400 MV/m; about 1 um: ~1000 to reach a relativistic beam

Typical values for RF-guns is

Important implications:

1) Keep the **bunch in phase** with the wave: a complex trade-off of more parameters

2) Strong dependence of E_r and E_z vs r position sub-relativistic cases.

3) In FIR DLA E_{z,v} vs r dependence is large by the bad-ration vs cavity 'aperture' (compared to RF cavities)

$$E_z = E_0 I_0(rk_1) \sin(\omega t - k_z z + \psi),$$

$$E_r = \frac{E_0 k_z}{k_1} I_1(rk_1) \cos(\omega t - k_z z + \psi),$$

$$B_{\phi} = \frac{\omega \epsilon_0 \mu_0 E_0}{k_1} I_1(rk_1) \cos(\omega t - k_z z + \psi),$$

, an easier behaviour

$$I_0(k_1 r) = 1$$

 $I_1(k_1 r)/k_1 = r/2$

F. LEMERY et al. PHYS. REV. ACCEL. BEAMS 21, 051302 (2018)

Bessel modified function 'l'

$$E_z = E_0 I_0(rk_1) \sin(\omega t - k_z z + \psi),$$

$$E_r = \frac{E_0 k_z}{k_1} I_1(rk_1) \cos(\omega t - k_z z + \psi),$$

$$B_{\phi} = \frac{\omega \epsilon_0 \mu_0 E_0}{k_1} I_1(rk_1) \cos(\omega t - k_z z + \psi)$$

Keep the bunch in phase with the wave, a very complex problem

Our case: end-energy vs phase-scan for different starting conditions

13

The Slot waveguide accelerating structure Particle Distributions studies

 $f = 1.49945 \cdot 10^5 GH_z$

<u>Slot DLA – distribion simulation</u>

2D case – bunch tracking

From numerical point of view, we must rescale main parameters.

Considering well known simulations set for S-band cavities (λ_{cell} =3.5 cm) witch typically drive bunch lengths ~ 10 μ ÷ 1 mm

Here with $\lambda_c = 1 \mu m$

```
we can consider a roughly: 3.5 \text{ cm/1} \mu \text{m} \approx 3.5 \cdot 10^4 \text{ factor.}
```

Let's do the scaling:

Bunch length:	<mark>350</mark> µm S-band	<mark>→</mark> 10 nm
Bunch rad:	<mark>140</mark> μm S-band	<mark>→</mark> 4 nm
R-K int. step	<mark>1 ps</mark> (S-band)	→ 1.5 · 10 ⁻⁸ ns (used 1 or 0.5 · 10 ⁻⁸)

Space-charge = 0 Energy spread = 0 Starting energy 80 keV & <u>79.5 keV</u> for the plateau case

The reference case 80 keV

On the more stable plateau 79.5 keV

Slot DLA – Astra simulation 3D case and bunch tracking

Slot DLA – Astra simulation 3D case and bunch tracking

I tested many different Grad. and inj. E_i :

it seems impossible to fined a good matching.

Probably the filed map is too poor, and we see only a field envelop

Activities in the frame of EuPRAXIA:

- Plasma acceleration BD simulations
- Plasma betatron radiation
- Plasma based devices: bending, ion channel laser, etc ..
- Matching line tuning from plasma to Undulator by GIOTTC
- EuPRAXIA injector tuning by GIOTTO

GIOTTO simulations Optimizer code development

- Dielectric Laser Accelerators (DLA)
 - Woodpile TW cavity simulations
 - Sub-relativistic SLOT TW Cavity simulations

Magnetic Bottle trap by Symmetric ICS

BriXSinO ERL – Two pass acc. test facility

- GIOTTO applied to BriXSinO
- Low– Buncher *VS* frequency analysis
- HB₂TF news -

> Opt. FCC-ee positron capture line

STAR ICS machine status report

[this morning – A.R. Rossi talk] [this morning – A.R. Rossi talk] [tomorrow – A. Frazzitta talk]

[tomorrow, M. Rossetti Conti]

[this talk & tomorrow, G. S. Mauro] this talk – index] this talk – index]

[this talk –	inde	ex]	
	inde	exl	
		- ,	

this talk – index

[this talk – inde>

BriXSinO ERL project, the origin

Technical Design Report

The BriXSinO Layout

BriXSinO Bunchers: performances VS frequencies

1.3 GHz vs 650 MHz vs 433 MHz vs 325 MHz

Activities in the frame of EuPRAXIA:

- Plasma acceleration BD simulations
- Plasma betatron radiation
- Plasma based devices: bending, ion channel laser, etc ..
- Matching line tuning from plasma to Undulator by GIOTTC
- EuPRAXIA injector tuning by GIOTTO

GIOTTO simulations Optimizer code development

- Dielectric Laser Accelerators (DLA)
 - Woodpile TW cavity simulations
 - Sub-relativistic SLOT TW Cavity simulations
- Magnetic Bottle trap by Symmetric ICS
- BriXSinO ERL Two pass acc. test facility
 - GIOTTO applied to BriXSinO
 - Low– Buncher VS frequency analysis
 - HB₂TF news

Opt. FCC-ee positron capture line

STAR ICS machine status report

[this morning – A.R. Rossi talk] [this morning – A.R. Rossi talk] [tomorrow – A. Frazzitta talk]

[tomorrow, M. Rossetti Conti]

[this talk & tomorrow, G. S. Mauro] this talk – index] this talk – index]

[tomorrow, M. Rossetti Conti] [this talk – index] [this talk – index]

[this talk – index]

this talk – index

FCC-ee Pre-Injector: CHART Collaboration Meeting, 21 April 2023, LNF, Italy – Marcello Rossetti Conti contribute –

E.

Window optimization

- GIOTTO now optimizes particle distribution subsets within **specific windows**, now **enhancing first bucket** optimization (z-cut).
- It could optimize potentially in-acceptance window particles.

@ FCC-ee – prelaminar GIOTTO optimization

Recent tests

1- Use of a low- β bucher as first trapping device

2- Use of a more standard TW S-band SLAC cavity with a larger airis (r = 16.5 mm) VS 2.0 GHz TW mode (r = 30.0 mm)

Activities in the frame of EuPRAXIA:

- Plasma acceleration BD simulations
- Plasma betatron radiation
- Plasma based devices: bending, ion channel laser, etc ..
- Matching line tuning from plasma to Undulator by GIOTTC
- EuPRAXIA injector tuning by GIOTTO

GIOTTO simulations Optimizer code development

- Dielectric Laser Accelerators (DLA)
 - Woodpile TW cavity simulations
 - Sub-relativistic SLOT TW Cavity simulations
- Magnetic Bottle trap by Symmetric ICS
- BriXSinO ERL Two pass acc. test facility
 - GIOTTO applied to BriXSinO
 - Low– Buncher VS frequency analysis
 - HB₂TF news

Opt. FCC-ee positron capture line

STAR ICS machine status report

[this morning – A.R. Rossi talk] [this morning – A.R. Rossi talk] [tomorrow – A. Frazzitta talk]

[tomorrow, M. Rossetti Conti]

[this talk & tomorrow, G. S. Mauro] this talk – index] this talk – index]

[tomorrow, M. Rossetti Conti] [this talk – index] [this talk – index]

this talk <u>– ind</u>ex]

[this talk – index]

Sample Tomography @ moment, we are waiting for: Radioprotection Authorizations Thanks for your attention!

1D vs 3D case: Field seen by one particle:

Fields are very similar.

The one particle beam-dynamic is equal, clearly it is not visible the non-cylindrical transversal geometry

Sub-relativistic co-propagating structure (slot DLA)

In the next slides we will see:

Beam "dancing" on the wave crest. The beam will be never full relativistic The field curvature is very strong. $E_p = 400 \text{ MV/m \& } \lambda \text{-cell'} = 1 \text{ um}$

To consider: 2D maps with 25 points for λ could be not enough for a best description "Astra's smoothing used"

Soon, let's test a much denser maps (1D case and 3D case)

Slot DLA – Astra simulation 2D map – bunch tracking

Long. Phase-space

Slot DLA – Astra simulation

2D case – bunch tracking

It sounds that 25 points for λ are not enough – we have stron numerical noise

test **Astra field smoothing** algorithm with different weights

Analysis reused for the single particle tracking seen previously

Slot DLA – Astra simulation single particle tracking

The field bump comes from synchrotron oscillations (is the effect given by maps resolutions? ...) A further investigation is required.

Position shift injecting -2,-1,0,+1,+2 deg

end-phase

The normalized vector potential shrinks with increasing frequency

... because the gradient is not increased as much as the wavelength decrease

Th. Vinatier et al. EAAC 2017, NIM A 909 (2018) 185-192

UBA17,K. Floettmann talk

Diagnostics and bunch intensity control via Compton scattering

I. Drebot, S. Cialdi², INFN-Milano & Univ. degli Studi di Milano (Italy) A. Abramov, M. Hofer, F. Zimmermann (CERN)

In FCC-ee colliding bunches **intensity must be tightly controlled**: 3–5% as maximum charge imbalance flip-flop instability

Laser Inverse Compton Scattering (ICS) could be used to adjust and fine-tune the bunch intensity.

Activities under study:

(1) Optimum between flip-flop instability and emittance growing. (2) Bunch Energy distribution optimization (ICS in dispersive regions). (3) Beam halo reduction with Donuts-shaped laser beam. (4) Scattered photons for diagnostic. (5) Find applications and users for 25 and 150 GeV photon beam

Ne_{tot}=2.68e+11; Ne_{scat}=3.45e+07;

FCC Week 2023 – London

FCC-ee positron source: requirements

Positron source basic scheme

<u>Accepted e⁺ yield</u> is a function of primary beam characteristics + target + capture system + DR acceptance

To estimate the accepted yield: energy window cut: (1540 ± 58.5) MeV \rightarrow (±3.8% @ 1.54 GeV) time window cut: 40° RF (~16.7 mm/c @2 GHz)

The complete filling for Z running => Requirement ~2.75 × 10¹⁰ e⁺/bunch (4.4 <u>nC</u>) at the <u>linac</u> end or 5.4 nC accepted in the DR

N_{e} /bunch × $n^{e+}_{Accepted} \ge 5.4$ nC/bunch × 2.5

*A safety margin of 2.5 is currently applied for the whole studies.

All the studies are focused on the operation scheme: 6 GeV, 2 bunches/pulse, 200 Hz rep. rate \rightarrow positron flux of ~1.1×10¹³ e⁺/s (×2.5). Demonstrated at SLC (a world record for existing accelerators): ~6 × 10¹² e⁺/s

07/06/2023

FCC Week 2023, 5-9 June (London, United Kingdom)

Iryna Chaikovska courtesy