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User demands
• From Zalden et al. Terahertz Science at European XFEL, European XFEL Report XFEL. EU TN-2018-001-

01.0 (2018); users would like:
• Tunable bandwidth between 1 (single-cycle) and 0.05 (20 cycles)
• Frequency range between 0.1 (3) to 30 THz
• Pulse fluence/field strength: More than 2 MV/cm which corresponds to 10 GW/cm^2

• Assuming e.g. a 1 ps pulse duration, this would correspond to fluences of 10 mJ/cm^2
• Some examples for a spot size ~ wavelength are: 

• 3 mJ at 100 GHz
• 30 uJ at 1 THz
• 300 nJ at 10 THz 
• Note these numbers vary depending on the bandwidth of request THz

• CEP stable
• Repetition rate should operate at minimum 100 kHz, but ideally at 4.5 MHz (burst).
• Synchronization better than 0.1/frequency 

• 1 ps at 100 GHz
• 20 fs at 5 THz
• 3.3 fs at 30 THz
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Electron beam based radiation sources

• At 16 GeV, undulator approaches are challenging to cover the THz regime (m for 18 GeV) 

• Cherenkov approaches are energy independent and depend on inner aperture and thickness

• Diffraction radiation is also appealing for its ability to produce very broadband radiation on the order of uJ.
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Cherenkov waveguides
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Dielectric-lined waveguides
• Dielectric-lined waveguides (DLW), corrugated 

metallic structures support wakefield deceleration 
e.g. “structure wakefield acceleration” (SWFA).

• Wakefields have group velocity (unlike plasma) and 
can be extracted for various applications.

• Stability of radiation depends essentially on qF 
term.
• Here, q is charge, F is the form factor, L is the 

structure length, and  is the inner radius.
• See K. Floettmann, et. al Rad. (2021) 28, 18-27 
for details.

Energy

Power

TM01 
Field Eqns.

https://journals.iucr.org/s
https://journals.iucr.org/s/contents/backissues.html
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Dielectric Tube
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Nils Lockmann

THz

Diffraction radiation – an extremely broadband source

• An electron beam passing through an aperture leads to 

diffraction radiation.

• In the limit the aperture goes to zero and the foil size goes to 

infinity, the energy/spectrum is given by:

• Used in CRISP to reconstruct beam current profile using THz 

radiation, see disseration of N. Lockmann

 Could be used at STERN as a THz source for users

• Select frequency and bandwidth using grating filtering 

system
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THz structures and development
• Currently investigating several types of waveguides: dielectric lined, corrugated, and bi-metallic (Armenian 

colleagues).

• Corrugated structures are more challenging to produce in cylindrical symmetries, while dielectric and 
bimetallic waveguides can be produced more easily
• Dielectric e.g. fused silica can be drawn and coated, limited to thicker capillaries due to fragility.
• Dielectrics can also be deposited with gas or oxidation
• Metallic surfaces can also be deposited.

• Photonic crystal fibers are also attractive, however at high frequencies material losses are significant in fused 
silica.
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Drawn copper capillaries

• Clemens (MEA) has made great progress on cutting 
these structures

• Flat/straight cuts

• Longitudinal/Open cuts

• Vlasov cuts

• Collaboration with R. Zierold (CHyN) to investigate 
coating with Atomic Layer Deposition ALD.

• Very thin layers, as required for high frequencies, can 
be realized with a precision on an atomic layer 
thickness with various materials.

• In discussion with XFEL colleagues to develop 
method of characterizing these waveguides

• Another possibility is to use fs-scale bunches at 
REGAE and observe wakefield effect.

surface roughness (ZMQS)
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Experimental area overview

• Location approximately z=2950 (XS4)
• XTD8 will be diagnostics area and will be accessible during operation.
• Interested in symmetric beta function of beta_x=beta_y ~ 1 m .
• Need also to ensure proper conditions for BD+ 
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General layout of experimental area (2025) 
• Quadrupoles for focusing

• Dipoles for orbit bump to separate e & X beams

• BPMs for positioning

• Loss monitors (LM)

• Beam size diagnostics (screens + wire scanner)

• Screen positions determined by resolutions to measure waist
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Lattice design
• Mini-beta design to produce 1 m beta functions while maintaining requirements for beam dump.

• Design includes 10 new quadrupoles

• At 16 GeV, , .
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1.UG

2.UG

XS4 / XHE4 Overview

Location
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XS42UG
( Level   -2 )

2 Electronic racks 

WP17 Standard diagnostics
Responsible: M. Steckel, K Wittenburg
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General layout of experimental area (2025) 
• THz transport shown from chamber to user accessible diagnostics 

area after concrete chicane.

• Chamber design complete out for production

• Beam transport design underway, initial
design shown (right), details by Karel
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THz diagnostics – collaboration with Lille. Courtesy Serge 
Bialawski
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THz diagnostics – spectrum approach
• Can also use spectral-based approach using gratings 

and detector arrays (CRISP), picture right from thesis 
of Nils Lockmann (now MSK).

• Technique uses 

• Looking to conduct measurements at FLASH where 
there is a source of up to 30 THz.

• Need to characterize waveguides, dispersion difficult 
but losses are more achievable.
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Design and Fabrication of THz-Bandpassfilters

| Toward THz Streaking | Francois Lemery, August 21, 2018)

Using 3D-printed Photonic Crystals
• Woodpile Structure for a complete photonic band gap

• Parameters: 
1) a = 200 μm, d1=    80 μm and d2= 70,7 μm (d1/a = 0.4)
2) a = 200 μm, d1=  100 μm and d2= 70,7 μm (d1/a = 0.5)

• Simulation with CST show bandgap of ΔBG = 0.11 at
     0.53 – 0.64 THz and  0.57 – 0.68 THz

• 3D printing with STL-3D-printer by Asiga

1) d1/a = 0.4
2) d1/a = 0.5
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Tilted Pulse Front Setup

| Toward THz Streaking | Francois Lemery, August 21, 2018)

For Generation of broad band single-cycle THz-pulses

Probe beam

Pump beam

Diffraction grating

Cyl. Lens
f1= 150mm

Cyl. Lens
f2= 75mm

LiNb Crystal

OAP1

OAP2 OAP3

EOS-Setup

THz-pulse

• Generation of THz-pulses by optical rectification of 
femtosecond laserpulses in LiNbO3

• Lasersystem: 40 fs Ti:Saph

• Pulse Characterisation with electro-optic-Sampling 
Setup using balanced detector method, 

• Spectrum goes up to 1.5 THz

• Conversion efficiency η = 0.56%

• Max. Pulse Energy E = 17.44 μJ
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THz transport

Courtesy investigation by Andrei Tribushinin.
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Lasing in a DLW - Possibility for experiment at AREAL
Achieving a very compact high-power THz source

Toward sub-fs electron bunches at ARES with novel scientific applications | Francois Lemery, 11.6.2020

• Can the wakefields produced in a waveguide act back onto the electrons at low energy to reorganize the 
electrons (gain) the electrons within a waveguide?

• This was actually explored long ago with low-brightness beams (microtrons) 

• The results were promising for the available technology. 

• In 2015, Stupakov published a theory paper on the concept, having ignored previous work from Walsh+
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Lasing in a DLW
Theory basics and example from Stupakov

Toward sub-fs electron bunches at ARES with novel scientific applications | Francois Lemery, 11.6.2020

• Gennady's paper uses a simple example, 5 MeV, 100 A beam in a corrugated (same to DLW) waveguide.

• The waveguide is 340 GHz with group velocity of 0.05c

• Leads to gain length of 7 cm, and saturation power of 6.7 MW.

• Further optimizations for different energies could be explored

• He further mentions that by tweaking various parameters the gain length can be reduced to 5.5 cm

• Important to also mention that the gain length is proportional to energy. (but so is possible extracted energy!)
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Thanks
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