

Preparation of a pH Sensor with Mg-doped BST-oxide gate and dielectric characteristics of Sensor Structure under Ultrashort Electron Beam Irradiation

Norayr Martirosyan

CANDLE, 0040 Yerevan, Armenia E-mail: n_martirosyan@asls.candle.am_; Tel.: +374 99 993349

Topics

- SHS of $Ba_{0.8}Sr_{0.2}Mg_{0.1}Ti_{0.9}O_3$ Compound
- Properties of BST Based Capacitive Fieldeffect pH Sensors
- Dielectric characteristics of nanofilm Pt/Ba0.8Sr0.2Mg0.1Ti0.9O3/Pt structure under electron beam irradiation

SHS Powder Production Technology

Experimental SHS Reactor

Quartz tube; 2. low noise amplifier; 3. end product; 4. analog-digital convertor; 5. green mixture; 6. thermocouples;
PC; 8. oxygen flow controller; 9. oxygen; 10. quartz mesh; 11. heater; 12. thermoresistant boat; 13. combustion front;
wolfram ignitor; 15. ignition block.

Temperature Distribution Along Combustion Front Propagation

I-green mixture; II-warming-up zone; III-metal oxidation zone; IV-active oxidation of metal and formation of the intermediated; V-zone of secondary chemical interactions between intermediates and formation of final product; VI-cooling-down zone.

The Synthesis were Done According to the Following Chemical Schemes

• $yMgO+xBaO_2 + [1-y][(1-k)TiO_2 + kTi] + (1-x)SrCO_3 + O_2 \rightarrow Ba_xSr_{1-x}Mg_yTi_{1-y}O_3$

• $xBaO_2 + (1-k)TiO_2 + kTi + (1-x)SrCO_3 + O2 \rightarrow Ba_xSr_{1-x}TiO_3$

Combustion temperature (T_c) and velocity (U_c) vs. amount of combustible (Ti) in the initial mixture

XRD patterns of BSTO powder

SEM images of Mg doped $Ba_{0.8}Sr_{0.2}TiO_3$ compositions after SHS a)k=0.4; b)k=0.6.

SEM images after grinding by PULVERISETTE 6 planetary ball mill The milling duration is a)- 6 hours, b)- 11 hours.

Linear shrinkage factor of Ba_{0.25}Sr_{0.75}TiO₃ ceramic samples vs. sintering temperature

SEM image of Ba_{0.25}Sr_{0.75}TiO₃

PLD of Mg doped $Ba_{0.8}Sr_{0.2}TiO_3$ on a silicon substrate (p-Si, $\rho = 1000 \Omega$ cm)

- Oxygen flow 30 mL/min, pressure 2x10⁻³ mbar;
- KrF-excimer laser (Lambda LPX305) with a pulse width of 20 ns ;
- Pulse energy of approximately 1J per pulse;
- Energy density of 2.5 Jcm⁻²;
- Repetition rate of 10 Hz;
- Deposition time of 100 s.

BST Based Capacitive Field-effect pH Sensors

C-V Curves for BST-based Field-Effect Sensors

ConCap response of an EBSTIS sensor with Ba_{0.31}Sr_{0.69}TiO₃ and Ba_{0.8}Sr_{0.2}Mg_{0.1}Ti_{0.9}O₃ film recorded in buffer solutions of different pH values

AREAL machine parameters for Electron Beam

Irradiation of $Ba_{0.8}Sr_{0.2}Mg_{0.1}Ti_{0.9}O_3$

<u>RF System</u>			
RF High Voltage	[kV]	133	
RF High Voltage (Peak Power)	[dBm]	-4.58	Power meter on Gun
RF Phase	[deg]	-38	
Pulse Repetition Rate	[Hz]	12	
Magnets			
Solenoid Current	[A/V]	9.8/46	
Dipole Current	[A/V]	4.2/9	
Corrector Magnet (X Y)	[A/V]	2.91/8	
Beam Parameters			
Beam Charge (FC-IN / FC-OUT)	[pC]	300/50	30 (absorbed by sample)
Beam Energy spectrometer	[MeV]	3.6	
Laser System			
Laser pulse duration	[ps]	0.5	
Time		1 hour	
Beam Profile @ YAG 1 (straight screen)		Beam profile @ spectrometer E=3.7 MeV	

V-I Characteristics of Ba_{0.8}Sr_{0.2}Mg_{0.1}Ti_{0.9}O₃

Before Irradiation

After 1st Irradiation

After 2nd Irradiation

AREAL machine parameters for Electron Beam Irradiation of Ba_{0.31}Sr_{0.69}TiO₃

<u>RF System</u>			
RF High Voltage	[kV]	132	
RF High Voltage (Peak Power)	[dBm]	-4.02	Power meter on Gun
RF Phase	[deg]	-38	
Pulse Repetition Rate	[Hz]	12	
Magnets			
Solenoid Current	[A/V]	9.6/45	
Dipole Current	[A/V]	4.2/9	
Corrector Magnet (X Y)	[A/V]	2.91/8	
Beam Parameters			
Beam Charge (FC-IN / FC-OUT)	[pC]	255/53	30 (absorbed by sample)
Beam Energy spectrometer	[MeV]	3.7	
Laser System			
Laser pulse duration	[ps]	0.5	
Time		1 hour	
Beam Profile @ YAG 1 (straight screen)		Beam profile @ spectrometer E=3.7 MeV	

The C-f dependences of the examined structure

Before-blue line; after the first irradiation-red;

after the second irradiation-green; after the third irradiation-purple.

The calculation of ε_f of the examined structures

Equivalent circuits of the examined structures

The total (measured) capacitance of the structure:

 $C_{t_0t} = (n-1)l \cdot C_1$ *n* is the amount of fingers, *l* is the length of the fingers. $\varepsilon_0 \varepsilon_f \quad K[(1-k^2)^{1/2}] \qquad \varepsilon_0 \varepsilon_f K(k^1)$

$$C_{1} = \frac{c_{o}c_{f}}{2} \cdot \frac{K[(1-k^{-})^{+2}]}{K(k)} = \frac{c_{o}c_{f}K(k^{-})}{2 \cdot K(k)},$$

K(k) is the complete elliptic integral of the finst kind with modules of k.

$$k = \cos\left(\frac{\pi}{2} \cdot \frac{w}{w+S}\right).$$

The capacitance of the equivalent circuit of structure:

 $C_{t_ot} = C_s + C_\beta + C_f + C_{exp} + C_i$,

where C_s is the capacitance of the substrate (pS_i) , C_β is the parasitic capacitance between P_t electrodes (fingers), C_f is the capacitance of ferroelectric film, C_{exp} is the capacitance of the measurement set-up, C_i is the insulator lager (SiO₂) capacitance. The numerical calculations of C_i , C_β is shows, that its value about two order less than that the C_f and ignoring also the C_s , C_β and C_{exp} , we used the approximation of:

$$\varepsilon_f \cong \frac{2C_{t_0t}}{\varepsilon_0 \cdot l \cdot (n-1)} \cdot \frac{K(k)}{K(k^1)}$$

The E_f –f dependences of the examined structures Before-blue line; after the first irradiation-red; after the second irradiation-green; after the third irradiation-purple.

The tan δ -f dependences of the examined structures

Before-blue line; after the first irradiation-red; after the second irradiation-green; after the third irradiation-purple.

Formation of oxygen vacancy

Before Irradiation of Ba_{0.31}Sr_{0.69}TiO₃

After Irradiation of Ba_{0.31}Sr_{0.69}TiO₃

 $Ba_{0.8}Sr_{0.2}Mg_{0.1}Ti_{0.9}O_3$

SUMMARY AND CONCLUSION

- It is established that the threshold value for k is 0.5 (if K=0) and for K is 0.25 (if k=0), only at greater values of k and K, the process can proceed under the self-sustaining mode.
- The phase structure investigation shows no other phases when the amount of combustible was about 10% (where Fe-8%, Ti-2%).
- As a result of calculations and series of experiments, it is determined that optimal grinding regimes and conditions are as follows: the volume relationship of the charge (material to be milled) and milling bodies/balls should be 1/4...1/3; acetone has to be used as a milling medium to form a freely flowing cream. Efficient milling is obtained when the volume of acetone is between 100 and 200% of the volume of the charge. The quantity of the grinding body/ball has been taken 70% of pots volume. The milling body/ball were of 4...8 mm in size (the largest diameter being of the order of a tenth of the diameter of the pot). The rate of the rotation (ω d) of the base disk is 400...600 rev/min. The milling duration is 7 hours.
- BF–BT based pellets are sintered between 700 °C and 1000 °C in an electric furnace and air atmosphere for 2 hours under controlled heating/cooling rates of 2.5 °C/min.
- The dependence for linear shrinkage factor and gas-penetrability of the samples vs. sintering temperature indicates that intensive sintering begins with 880 °C, and the maximum density of the samples is practically obtained at 950 °C.
- The tunability factors $(\varepsilon(0)/\varepsilon(E) \text{ and } \mu(0)/\mu(E))$ for dielectric and magnetic permeability of BFO-BST are in the range of 1.22-1.27 and 1.18-1.19 respectively at 60 KV/cm biasing field.
- The change of dielectric constant and tangens losses is a result of oxygen vacancy formation during irradiation.

Thank You