High-power single-pass THz FEL at PITZ in operation

Photo Injector Test facility at DESY in Zeuthen (PITZ): Proof-of-Principle experiments on THz source for the European XFEL

Mikhail Krasilnikov for the THz@PITZ team, Ultrafast Beams and Applications 17-23 June 2024, CANDLE, Armenia

HELMHOLTZ

Motivation for THz R&D at PITZ

Accelerator based THz source for pump-probe experiments at the European XFEL

THz source requirements (P. Zalden, et al., "Terahertz Science at European XFEL", XFEL.EU TN-2018-001-01.0):

- **Tunable** $\rightarrow f = 0.1 \dots 20 \ THz \ (\lambda_{rad} = 3mm \dots 15 \mu m)$
- Various temporal and *spectral* patterns, polarization ideally **narrow-band** $\rightarrow \Delta W/_W \sim 0.1 \dots 0.01$
- Time jitter \rightarrow from CEP (few fs) stable for field driven to "intensity" driven dynamics (~longest pulse duration) $\rightarrow \sigma_t \sim 0.1/f$
- High pulse energy $W > 10\mu J$ (μJ hundreds of μJ mJ, depending on f)
- **Repetition rate** to follow European XFEL \rightarrow (600 μ s ... 900 μ s) × (0.1 ... 4.5MHz) × 10Hz = 27000 ... 40500 pulses/s

Cherenkov radiation (DLW)

Photo Injector Test facility at DESY in Zeuthen (PITZ)

Proof-of-principle Experiment on THz Source at PITZ

Where we are now

Proposal "Conceptual design of a THz source for pump-probe experiments at the European XFEL based on a PITZ-like photo injector" has been supported by the E-XFEL Management Board \rightarrow dedicated R&D activities at PITZ \rightarrow Proof-ofprinciple experiments (2019-2023)

parameter	Min. requirements [1]	PITZ (exp)	
Bandwidth	10.05	~0.02	
f [THz]	0.1 <mark>320</mark> 30	<mark>35</mark>	
Pulse energy	<u>3mJ@0.1THz;</u> <u>30µJ@1THz;</u> 10µJ@10THz	3065µJ@3THz <	Gaussiar photocatho laser, 2-3 r bunch char
CEP	yes	To be studied	
Rep.Rate (burst)	0.1MHz4.5MHz	1MHz4.5MHz	
Synchronization	<0.1/f	To be investigated	
Polarization	optional	yes	

Scientific requirements:

[1] P. Zalden, et al., "Terahertz Science at European XFEL",

XFEL.EU TN-2018-001-01.0

"..3 to 20 THz is the most difficult to cover by existing sources; at the same time, many vibrational resonances and relaxations in condensed matter occur at these frequencies."

THz SASE FEL source for pump-probe experiments at European XFEL

PITZ-like accelerator can enable high-power, tunable, synchronized THz radiation

Proof-of-Principle Experiments on THz SASE FEL at PITZ: Technical Realization

PITZ upgrade for the proof-of-principle experiment on THz source

Design and technical Implementation

THz SASE FEL at PITZ: **Electron Beam Transport** and **FEL Lasing Tuning**

log(radiation power)

THz SASE FEL at PITZ

SASE Gain Curves at High3.Scr3 with BPF

In-vacuum mirror without hole + 3THz Band-pass filter

Using Gaussian photocathode laser pulses 7-8ps FWHM

Optimization progress					
<pulse energy=""> (fluctuations)</pulse>					
High3.Scr2 vs		High3.Scr3			
	M				
Bunch	1 st lasing.	Tuning,			
charge	no BPF	BPF			
charge 1nC	no BPF 0.36 uJ (32%)	BPF 6.12uJ (13%)			

Reference case: 2nC, 3THz

Cross-check with linear theory of FEL amplifier with diffraction effects

DESY. | High-power single-pass THz FEL at PITZ in operation | Mikhail Krasilnikov, UBA'24 guiding magnetic field", Nucl. Instr. Meth. A 375, p. 241, 1996.

First Seeding Experiments

- Gain Curves at HIGH3.Scr3 (THz mirror w/o hole) with BPF (3THz)
- THz FEL Seeding experiments

 (2nC e-beam with modulated photocathode laser pulse):
 <W>→ 33µJ vs 21µJ from SASE

Pz-distributions of e-beam (2nC) after gun (LEDA)

Simulations Challenges

Shot (intrinsic) noise accurate modeling

• The bunching factor

$$bf(\lambda,t) = \frac{1}{N_t} \sum_{n \in N_t}^{c|t_n - t| \le \lambda/2} e^{2\pi i \frac{ct_n}{\lambda}}.$$

• For random distribution, the square of bunching factor (or the shot noise) follows exponential distribution and we have $\langle |bf(\omega)|^2 \rangle = \frac{1}{N_e}$, where N_e is the number of electrons within one radiation wavelength,

e.g., $I_{peak} = 2 \text{ kA}$, $\lambda_s = 0.1 \text{ nm}$ for XFEL and $I_{peak} = 200 \text{ A}$, $\lambda_s = 100 \text{ }\mu\text{m}$ for THz : Ne(THz)/Ne(XFEL) = **10**⁵ !

- But, due to the longer wavelength of THz, the radiations actually see a density slope within one wavelength
- There are other possible reasons for an increased noise level at THz wavelengths (emission from cathodes, Boersch effect, etc.)

THz SASE FEL at PITZ: Further Optimization

High gain THz SASE FEL (~3THz) characterization

Electron beam in dispersive section and pyrodetectors signals

Electron beam in dispersive section and pyrodetectors signals

THz FEL Spectrum Measurements at TD3 (High3.Scr3)

11.04.2024N, FTIR spectrometer measurements (with E. Zapolnova, FS-FLASH-B)

THz FEL Spectrum Measurements at TD3 (High3.Scr3)

11.04.2024N, FTIR spectrometer measurements vs. simulations

• 2nC, central frequency around 2.82 THz (106.5 μm), reference signal - from PITZ pyro

First THz imaging with Pyro Camera

Pyrocam IIIHR

Recent alignment (TD3.M3 roll)

THz imaging with Pyro Camera

Along the gain curve

Conclusions

THz R&D at PITZ

 PITZ-like accelerator → high-power tunable accelerator-based THz source for pump-probe experiments at the European XFEL → identical pulse train structure + high (~2-4nC) bunch charge

Proof-of-principle experiments at PITZ (supported by EuXFEL)

Key findings / experiences gained / lessons learned :

- **17m** new THz beamline at PITZ with *LCLS-I* undulator, including *BC*
- **SC** dominated beam transport and matching procedures
- Detailed FEL *simulations* → impact of the **bunching factor**
- Beam dynamics and FEL *simulations* for *THz*@*PITZ* and for the proposed *ideal machine* (*CDR studies*)

Experimentally demonstrated:

- High-gain THz FEL lasing at ~3THz with ~17MeV/c,
 2nC Gaussian beams, more than 100µJ generated,
 THz pulse energy fluctuations ~6-10%
- 1st seeding with modulated PC laser pulses
- Narrow **bandwidth** (1st FTIR measurements)
- 1st THz radiation imaging

THz@PITZ Team and Collaboration

Proof-of-principle experiment on high power THz source

Physicists:

- Z. Aboulbanine*
- G. Adhikari*
- N. Aftab
- P. Boonpornprasert*
- G. Georgiev*
- J. Good
- M. Gross
- A. Hoffmann
- E. Kongmon*
- M. Krasilnikov
- X.-K. Li
- A. Lueangaramwong*
- R. Niemczyk*
- A. Oppelt
- H. Qian*
- C. Richard
- F. Stephan
- G. Vashchenko
- T. Weilbach*
- X. Zhang
- * \rightarrow left PITZ for other lab

DESY Zeuthen

Special thanks to CANDLE colleagues participated in THz commissioning and lasing shifts!

Engineers and Technicians:

- R. General
- L. Heuchling
- M. Homann
- L. Jachmann,
- D. Kalantaryan
- W. Köhler
- G. Koss
- S. Maschmann
- D. Melkumyan
- F. Müller
- R. Netzel
- B. Petrosyan
- S. Philipp
- M. Pohl
- C. Rüger
- A. Sandmann-Lemm
- M. Schade
- E. Schmal
- J. Schultze
- S. Weisse

SLAC

- A. Brachmann
- N. Holtkamp
- H.-D. Nuhn

DESY Hamburg

- E. Schneidmiller
- M. Yurkov
- B. Krause
- M. Tischer
- P. Vagin

Uni Hamburg

- J. Rossbach
- W. Hillert

Thank you!

Radiation Biology at PITZ: FLASH RT Studies

courtesy S. Gohari

FLASHlab@PITZ

DESY

Zeuthen, Germany

Frank.Stephan@desy.de

https://pitz.desy.de/research_and_development/flashlabpitz/

IΤ

DESY.

WILDAU

flashlabpitz/beam_time_request

Particle type	Electrons			
Source / accelerator	Photoinjector with Linac			
Energy (min. max.) [MeV]	6 – 22			
Dose rate (min. max.) Gy/s	0.05 – 10 ⁶ (pulse) – 10 ¹² (peak)			
Beam time structure	Pulsed, adjustable # bunches			
Homogeneous application:				
Field size (max.) [mm x mm]	20 x 20, > at longer distance			
Minibeam application:				
Beam size [µm]	20 – 300 @exit window			
Beam production	focusing or collimation poss.			
Beam application	scattering or scanning poss.			

Sample environment:	
Startup beam line: experimental area with water bath or with me samples, 10-300 μL) Full beam line (installation planned to start summer a experimental area with robotic arm, online dosimetry and moving wate samples, planned 10-300 μL)	oving stage (10 2 024): er bath (up to 27
Experimental environment:	
<i>in vitro</i> experiments: chemistry, 2D and 3D cell culture, sample prep and analysis <i>in vivo</i> experiments: animal biolab under prep for zebrafish emb be operational in 2024)	ryo and mice (to
Facility access:	
To apply for beam time: https://pitz.desy.de/research_and_development/	

F. Stephan, et al. Physica Medica 104 (2022): 174-187.

Thank you!