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Introduction 

In particle accelerator facilities charged particle beams are being controlled and 
manipulated by various types of magnets. Bending magnets, as well as corrector magnets are 
used for the beam guidance and steering. Beam focusing is realized by applying solenoid and 
several quadrupole magnets in doublet and triplet arrangements. Finally, light with specific 
properties will be produced through the periodic magnetic structure, the undulator. 

Solenoid magnets are used for focusing low energy particle beams. Unlike with optical 
lenses, the image is rotated with respect to the object. Since the focal length increases with the 
square of the momentum, a solenoid lens is effective only for small momenta. Iron cover of 
the solenoid provides a return path for the solenoid field, thus enhancing and concentrating 
the field inside the magnet gap which is seen by the particle beam. In contrast to the solenoid, 
the quadrupole magnet focuses the beam only in one plane. If it focuses the beam in the 
horizontal plane, then the beam is being defocused in the vertical plane and vice versa. 

Experimental tasks include: 1) Mapping of the axial magnetic field along the central axis 
of the quadrupole magnet using HALL probes; 2 Demonstration of focusing effect of the 
solenoid magnet by variation of the magnet current and observation of beam profile on the 
YAG scintillation screen. Demonstration of the beam bending by dipole magnet by registration 
of beam using Faraday cup and YAG scintillation screen station. 

1  Mathematical fundamentals 

A simple expression, satisfying Laplace’s equation ∇2𝐹𝐹 = � 𝜕𝜕
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕
𝜕𝜕𝑦𝑦2

� 𝐹𝐹 = 0, fully 

characterizing the two dimensional magnetic field in the absence of iron and current (in the 
air region) is 𝐹𝐹 = 𝑧𝑧𝑛𝑛 where 𝑧𝑧 = 𝑥𝑥 + 𝑖𝑖𝑖𝑖  is the complex space coordinate.   

 Taking the derivatives;   
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑑𝑑𝜕𝜕
𝑑𝑑𝑥𝑥

= 𝑛𝑛𝑧𝑧𝑛𝑛−1 𝑑𝑑𝜕𝜕
𝑑𝑑𝑥𝑥

   But 𝑑𝑑𝜕𝜕
𝑑𝑑𝑥𝑥

= 1.  Therefore,  𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

= 𝑛𝑛𝑧𝑧𝑛𝑛−1.   
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2

= 𝜕𝜕�𝑛𝑛𝜕𝜕𝑛𝑛−1�
𝜕𝜕𝜕𝜕

𝑑𝑑𝜕𝜕
𝑑𝑑𝑥𝑥

= 𝑛𝑛(𝑛𝑛 − 1)𝑧𝑧𝑛𝑛−2.   
𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑑𝑑𝜕𝜕
𝑑𝑑𝑦𝑦

= 𝑛𝑛𝑧𝑧𝑛𝑛−1 𝑑𝑑𝜕𝜕
𝑑𝑑𝑦𝑦

.    But 𝑑𝑑𝜕𝜕
𝑑𝑑𝑦𝑦

= 𝑖𝑖.  Therefore, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

= 𝑛𝑛𝑧𝑧𝑛𝑛−1 𝑑𝑑𝜕𝜕
𝑑𝑑𝑦𝑦
𝑖𝑖.   

𝜕𝜕2𝐹𝐹
𝜕𝜕𝑖𝑖2

=
𝜕𝜕(𝑛𝑛𝑧𝑧𝑛𝑛−1)

𝜕𝜕𝑧𝑧
𝑑𝑑𝑧𝑧
𝑑𝑑𝑖𝑖

= 𝑛𝑛(𝑛𝑛 − 1)𝑧𝑧𝑛𝑛−2𝑖𝑖2 = −𝑛𝑛(𝑛𝑛 − 1)𝑧𝑧𝑛𝑛−2 

 Substituting ∇2𝐹𝐹 = 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑦𝑦2

= 𝑛𝑛(𝑛𝑛 − 1)𝑧𝑧𝑛𝑛−2 − 𝑛𝑛(𝑛𝑛 − 1)𝑧𝑧𝑛𝑛−2 = 0.   

 Therefore, 𝐹𝐹 = 𝑧𝑧𝑛𝑛 satisfies Laplace’s equation. Moreover, 𝐹𝐹 = 𝐶𝐶𝑛𝑛𝑧𝑧𝑛𝑛 and 𝐹𝐹 =
∑ 𝐶𝐶𝑛𝑛𝑧𝑧𝑛𝑛𝑁𝑁
𝑛𝑛=1 where, in general,𝐶𝐶𝑛𝑛 is a complex constant also satisfy Laplace’s equation.  
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1.1 Multipole expansions 
In this section we denote the vertical coordinate by y instead of z because we want to keep the 
conventional notation z = x + iy for complex numbers.  
The length of modern accelerator magnets is usually much larger than their bore radius. The end 
field contribution is then rather small and the magnetic field has to a good approximation only 
transverse components. (This section relays heavily on the source [Rossbach, P. Schmüser, Basic 
course on accelerator optics,  DESY-M-93-02.].) 
For two-dimensional fields one can apply the theory of analytic functions. From  
div B = 0 
 
it follows that a vector potential A exists such that  
 
B = rot A          (1.1) 
 
Because of the transversality of the field, the vector potential has only a component As in the 
longitudinal direction s. In vacuum, for example inside the beam pipe, we have furthermore (for 
static fields)  
 
rot B = 0 
 
This implies that B can also be written as the gradient of a scalar potential V:  
 
B = − grad V          (1.2) 
 
Combining both equations (1.1, 1.2) we get:  
 

s
x

AVB
x y

∂∂
= − =

∂ ∂
  s

y
AVB

y x
∂∂

= − = −
∂ ∂

     (1.3) 

 
Now we define a complex potential function of z = x + iy  by           A (z) = As (x,y) + i V(x,y). 
 
The equations (1.3) are just the Cauchy-Riemann conditions for the real and imaginary part of an 
analytic function. So the complex potential is an analytic function and can be expanded in a power 

series    κn = λn + i µn     (1.4) 

 
with λn, µn real constants.  
From complex analysis we know that this series expansion converges for all z inside a circle   |z | 
< rc . The radius of convergence rc is the closest distance between the origin of the expansion and 
the iron yoke or the coil where the Eqs. (1.3) break down and (z) is no more analytic, see Fig. 
1.1.  

( )
0

n
n

n
A z zκ

∞

=

= ∑

A
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Figure 1.1: The multipole expansion with respect to z = 0 is only valid inside the circle rc (radius 
of convergence). 
 
Cylindrical coordinate representation  
For superconducting magnets, it is practical to express the field in cylindrical coordinates (r,ϕ,s), 
see Fig. 1.2:  
x = r cosϕ        y = r sinϕ       zn = rn ·einϕ = rn(cos nϕ +i sin nϕ)   (1.5) 

 
Figure 1.2: Cylindrical coordinate system used in the multipole expansion. 
 
The scalar potential is given by the imaginary part of Eq. (1.4)  

V(r,ϕ) = (µn cos nϕ+ λn sin nϕ) rn      (1.6) 

Similarly, we get from the real part of Eq. (1.4)  
 

As(r,ϕ) = (λn cos nϕ− µn sin nϕ) rn      (1.7) 

Taking the gradient of −V(r,ϕ), we get the multipole expansion of the azimuthal and radial field 
components, respectively  
 

 

 

Br = −  n(µn cos nϕ+λn sin nϕ) rn−1 

 

0n

∞

=
∑

0n

∞

=
∑

( ) 1

1
cos( ) sin( )ϕ λ ϕ µ ϕ

ϕ

∞
−

=

∂
= − = − −

∂ ∑ n
n n

n

VB n n n r
r

1n

∞

=
∑
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Now it is convenient to define a `reference radius' r0 for the multipole expansion and to denote the 
magnitude of the main field component of the magnet in question by Bmain. A useful choice for r0 
is the largest conceivable deviation of beam particles from the design orbit (25 mm in HERA, that 
is the inner radius of the beam pipe). Furthermore we introduce the ’normal’ multipole coefficients 
bn and the ‘skew’ coefficients an by 
  

 an = +       (1.8) 

 
Then the multipole expansions read (note that a0, b0 are set to zero as they don't contribute to the 
magnetic field)  
 

V (r,ϕ)  = −Bmain       (1.9) 

As (r,ϕ)  = −Bmain       (1.10) 
  

Bϕ (r,ϕ) = Bmain     (1.11) 

Br (r,ϕ)  = Bmain     (1.12) 

 
Remember that these multipole expansions are only valid within a circle of radius rc containing 
neither iron nor current! For an ideal 2n-pole magnet we have bn=1 and all other an,bn = 0. We 
call  

 
n = 1 Dipole 
n = 2 Quadrupole 
n = 3 Sextupole 
   

It is instructive to consider Bϕ + iBr :  

Bϕ + iBr = Bmain  

Bϕ + iBr = Bmain          (1.13) 

 
Thus  

(|B|)n =       (1.14) 

 

1
0

main

nn
n

nb r
B

λ −= − 1
0

main

nnn r
B

µ −

0
1 0

cos sin 
n

n n

n

a b rr n n
n n r

ϕ ϕ
∞

=

  − +   
  

∑

0
1 0

cos sin 
n

n n

n

b a rr n n
n n r

ϕ ϕ
∞

=

  +   
  

∑

( )
1

1 0

cos sin 
n

n n
n

rb n a n
r

ϕ ϕ
−

∞

=

 
+  

 
∑

( )
1

1 0

cos sin 
n

n n
n

ra n b n
r

ϕ ϕ
−

∞

=

 
− +  

 
∑

( ) ( )
1

1 0

cos  sin cos  sin 
n

n n
n

r b n i n ia n i n
r

ϕ ϕ ϕ ϕ
−

∞

=

 
+ − +    

 
∑

1

1 0

( )
n

in
n n

n

r b ia e
r

ϕ

−
∞

=

 
− 

 
∑

( )2 2 1 2 2
main

0

( )n
r n n

n

rB B B a b
rϕ

−+ = +
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i.e. the magnitude of the 2n pole field component does not depend on the azimuth and scales with 
the (n−1)th power of r. Equation (1.14) also illustrates a simple interpretation of the fractional 
multipole field coefficients an,  bn : They are just the relative field contribution of the nth multipole 
to the main field at the reference radius r0 . This is the reason why the coefficients λn,  µn have 
been normalized with Eqs. (1.8).  
Conventional accelerator magnets with iron pole shoes are limited to dipole fields of about 2 T 
and quadrupole gradients of about 20 T/m. Significantly higher values ( > 6 T, > 100 T/m) are 
possible with superconducting magnets. In these magnets the field distribution is entirely 
determined by the conductor arrangement and the coils have to be built with extreme accuracy to 
keep field distortions below the required level of 10−4. Figure 15a shows schematically the layout 
of a superconducting dipole.  
In iron-free magnets the field distribution generated by an azimuthal current distribution described 
by   is given by  

 

Ideally, the current as a function of the azimuthal angle ϕ should follow a cosϕ-distribution to 
generate a pure dipole field and a cos2ϕ (cos3ϕ) distribution for a quadrupole (sextupole) field. 
Since these ideal distributions are technically difficult to realize one approximates them by an 
arrangement of current shells. The cylindrical coordinate representation is particularly useful for 
magnet design from current shells.  
Another application of the cylindrical coordinate representation is the technique of measurement 
of the multipole components with a coil rotating in the field: The nth Fourier component of the 
induced voltage is proportional to while its phase is related to an/bn.  
In a good dipole or quadrupole magnet the unwanted multipole coefficients a n, b n are typically a 
few 10−4 or less.  
Finally it is noted that within the cylindrical coordinate representation one easily understands 
which multipole components are forbidden if specific symmetry properties of the field are 
assumed. For instance, for a quadrupole with perfect constructional symmetry only odd harmonics 
of the 4-pole are allowed. Or, as another example, if mirror symmetry with respect to the x − s 
plane is assumed, all skew components are forbidden since Bϕ must behave purely cos-like. A 
similar reasoning shows that any normal 2n-pole magnet transforms into a skew 2n-pole magnet 
if rotated by π/2n .  
 
Cartesian coordinates  
In cartesian coordinates, Eq. (1.4) reads 
 

As (x,y) + i V(x,y) =     (1.15) 

 

0( ) cos( )dI I n dϕ ϕ ϕ=
1

0 0

0 0

1
0 0

0 0

sin( )
2

cos( )
2

n

r

n

I rB n
r r

I rB n
r rϕ

µ
ϕ

µ
ϕ

−

−

 
= −  

 

 
= −  

 

2 2
n na b+

0
( )( )n n

n n n
n n o

z i x iyκ λ µ
∞ ∞

= =

= + +∑ ∑
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Separation of real and imaginary part and use of Eq. (1.8) yields  

As (x,y) = ℜ [  

+ (3x2y−y3) + (x4−6x2y2+y4)+  (x3y−xy3) ±... ]      (1.16) 

 

V (x,y) = ℑ κn zn = Bmain[a1 x − b1 y + (x2 − y2) − (x3− 3xy2)− 

 

(3x2y−y3) + (x4−6x2y2+y4)−  (x3y−xy3) ±... ]       (1.17) 

 
 
To get the cartesian components of the magnetic field we now have to take the gradient of 
−V(x,y) in cartesian coordinates, see Eq. (1.3)  
 

Bx (x,y) = − [−a1 + (x2− y2) +  

(x3−3xy2)+ (3x2y−y3) ±... ]          (1.18) 

 

By (x,y) = − [b1 + (x2−y2) + 

 

(3x2y−y3) + (x3−3xy2) ±... ]          (1.19) 

 
Another useful combination of Eqs. (1.18) and (1.19) is  

By + i Bx = − (As + i V) = −  (λn + i µn) (x+iy)n−1 

 

By + i Bx = Bmain (bn − ian)(  

 
 
Here are two applications of the cartesian representation of multipoles:  

1) If the motion of particles is described in cartesian coordinates, the contribution of each 
individual multipole to the equation of motion is easily identified. As stated before, the 
coefficients bn are called the "normal" multipole coefficients, an are the "skew" 
coefficients. In magnets containing normal coefficients only, a flat beam (i.e. no vertical 
extension) remains flat forever, since for y ≡ 0 there is Bx ≡ 0 , i.e. no vertical force. Thus, 
there is no coupling of horizontal motion into the vertical. 

main
0

n
n

n
k z B

∞

=

= −∑ 2 2 3 232 2
1 1 2

0 0

( ) ( 3 )
2 3o

bb a
b x a y x y xy x xy

r r r
+ + − + + − +
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b
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4
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2) Equation (1.17) is useful in conventional lens design work with iron pole shoes. It describes 
the pole contours of dipole-(n = 1), quadrupole-(n = 2), sextupole-(n = 3), octupole-(n = 
4), etc., magnets, because the pole contour is a line of constant magnetic potential. The 
pole contour of a normal quadrupole (b2), for instance, is given by the hyperbola x ·y = 
const (see Eq. (2.5)). 

Finally, we show explicitly the field distribution of the most important multipole components:  
 
Normal dipole (n = 1):    b1·Bmain = Bvert     (horizontally bending)  
Bϕ (r,ϕ)= Bvert·cosϕ   Br (r,ϕ)= Bvert·sinϕ 
Bx (x,y) = 0    By (x,y) = Bvert        

 
Skew dipole (n = 1):    a1·Bmain = Bhor     (vertically bending) 
Bϕ (r,ϕ)= Bhor·sinϕ   Br (r,ϕ)=−Bhor·cosϕ 
Bx (x,y) = −Bhor   By (x,y) = 0 
 
Normal quadrupole (n = 2):   b2·Bmain  = −g·r0     (where g is the gradient) 
Bϕ (r,ϕ) = −g r cos2ϕ   Br (r,ϕ) = −g r sin2ϕ 
Bx(x,y)  = − g y   By (x,y) = − g x 

 

2 Accelerator magnets 
The modern particle accelerators are equipped with dipole magnets for beam deflection 

and quadrupoles for beam focusing. Soft iron of high permeability is used to concentrate the 
field into the small region where it is needed. This also reduces electric power consumption 
and easily allows to provide high field quality. In those cases where the required field strength 
is either very small (𝐵𝐵 <<  0.1𝑇𝑇) or above the saturation level (𝐵𝐵 >  2 𝑇𝑇), "air coil" magnets 
are used. (This section relays heavily on the source [Rossbach, P. Schmüser, Basic course on 
accelerator optics,  DESY-M-93-02.].) 

2.1 Dipole magnet  
A magnet with flat pole faces generates a homogeneous field 𝐵𝐵(Fig. 2.1). 

 
Figure 2.1: Schematic view of a dipole magnet 
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The field is computed from the formula 

�𝑯𝑯 ∙ 𝒅𝒅𝒅𝒅 = ℎ𝐻𝐻0 + 𝑙𝑙𝐻𝐻𝐸𝐸 = 𝑛𝑛𝑛𝑛 

𝐻𝐻𝐸𝐸 =
1
𝜇𝜇𝑟𝑟
∙ 𝐻𝐻0 

For 𝜇𝜇𝑟𝑟 ≫ 1 we obtain 

𝐵𝐵0 = 𝜇𝜇0𝑛𝑛𝑛𝑛
ℎ

;   ℎ = 𝑔𝑔𝑔𝑔𝑔𝑔 ℎ𝑒𝑒𝑖𝑖𝑔𝑔ℎ𝑡𝑡       (2.1) 

Formula (2.1) is only approximate. In particular it neglects fringe fields and iron 
saturation. The radius of curvature for a particle of charge 𝑒𝑒 and momentum 𝑔𝑔 is given by 

1
𝜌𝜌

[𝑚𝑚−1] = 𝑒𝑒𝐵𝐵0
𝑝𝑝

= 0.2998 𝐵𝐵0[𝑇𝑇]
𝑝𝑝[𝐺𝐺𝑒𝑒𝐺𝐺/𝑐𝑐]

      (2.2) 

2.2 Solenoid lens  
A relatively simple magnetic lens arises from the magnetic field of a rotationally 

symmetric coil, see Fig. 2.2. 

 
Figure 2.2: Particle trajectories and field lines in a "thin" lens formed by the solenoid 

Due to the Maxwell equation 𝑑𝑑𝑖𝑖𝑑𝑑𝑩𝑩 =  0, the magnetic field, which is purely 
longitudinal in the inner part of the coil, must contain radial components in the outer part. 
While particles moving exactly on the axis do not experience any force, the others suffer an 
azimuthal acceleration due to the radial component while entering and leaving the lens. 
Because of the azimuthal motion there is a radial force in the longitudinal field. As required 
for imaging, this force is, indeed, proportional to the radial distance 𝑟𝑟 if 𝑟𝑟 does not change too 
much during the passage of the lens. To increase the field close to the axis and to concentrate 
it into a small area, the coil is usually surrounded by an iron yoke. The focal length 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠 is given 
by  

1
𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠

= ∫ �𝑒𝑒𝐵𝐵𝑠𝑠2𝑝𝑝
�
2
𝑑𝑑𝑑𝑑       (2.3) 

In contrast to optical lenses, the image is rotated with respect to the object. As seen from 
Eq. (2.3), 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠  increases with the square of the momentum 𝑔𝑔. Therefore a solenoid lens is 
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effective for small momenta only. At  >>  1 𝑀𝑀𝑒𝑒𝑀𝑀/𝑐𝑐 , a quadrupole magnet is a much more 
effective lens. 

2.4 Quadrupole magnet 
 Quadrupole magnets have four iron pole shoes with hyperbolic contour (Fig. 2.3). 

 
Figure 2.3: Cross-section of a quadrupole magnet. 

With the polarity shown, the horizontal component of the Lorentz force on a positively 
charged particle, moving into the plane of the drawing, is directed towards the axis, the vertical 
component is directed away from the axis. The magnet shown is thus horizontally focusing, 
vertically defocusing. The opposite holds when the current direction, the particle charge or its 
direction of motion is reversed. 

The field is linear in the deviation from the axis: 
𝐵𝐵𝜕𝜕 = −𝑔𝑔𝑥𝑥; 𝐵𝐵𝑥𝑥 = −𝑔𝑔𝑧𝑧         (2.4) 

In the air space of the magnet which contains neither iron nor current conductors we 
have the Maxwell equation 

∇ × 𝑩𝑩 = 0       (2.5) 
Here the field can be written as the gradient of a potential  
𝑩𝑩 = −∇𝑀𝑀 with 𝑀𝑀(𝑥𝑥, 𝑧𝑧) = 𝑔𝑔𝑥𝑥𝑧𝑧        (2.6) 

The equipotential lines are the hyperbolas 𝑥𝑥𝑧𝑧 =  𝑐𝑐𝑐𝑐𝑛𝑛𝑑𝑑𝑡𝑡. The field lines are 
perpendicular to them. If the relative permeability of the iron is large,𝜇𝜇𝑟𝑟  >>  1, iron pole 
shoes with hyperbolic contour generate a rather pure quadrupole field (2.4).   

The gradient 𝑔𝑔 and the current 𝑛𝑛 in the coils can be related by the integral theorem 
∮𝑯𝑯 ∙ 𝒅𝒅𝒅𝒅 = 𝑛𝑛𝑛𝑛      (2.7) 

The path of integration is shown in Fig. 2.4. 
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Figure 2.4: Path of integration used to compute the quadrupole gradient as a function of the 

current 

𝑛𝑛𝑛𝑛 = ∮𝐻𝐻𝑑𝑑𝑑𝑑 =  ∫ 𝐻𝐻(𝑟𝑟)𝑑𝑑𝑟𝑟𝑅𝑅
0 +  ∫ 𝐻𝐻𝐸𝐸 ∙ 𝑑𝑑𝑑𝑑 +  ∫ 𝐻𝐻 ∙ 𝑑𝑑𝑑𝑑0

2
2
1    (2.8) 

On the first path 𝐻𝐻(𝑟𝑟)  =  𝑔𝑔𝑟𝑟/𝜇𝜇𝑟𝑟. The second integral is very small for 𝜇𝜇𝑟𝑟 >>  1. The 
third integral vanishes identically since 𝑯𝑯 ⊥ 𝒅𝒅𝒅𝒅. So we get in good approximation 

𝑛𝑛𝑛𝑛 = 1
𝜇𝜇0

 ∫ 𝑔𝑔 𝑟𝑟 𝑑𝑑𝑟𝑟𝑅𝑅
0   𝑟𝑟 = √𝑥𝑥2 + 𝑧𝑧2        (2.9) 

𝑔𝑔 = 2𝜇𝜇0𝑛𝑛𝑛𝑛
𝑅𝑅2

           (2.10) 

In analogy to the bending strength 1/𝜌𝜌 of a dipole magnet, it is convenient to relate the 
field gradient to its optical effect. To this end, the field gradient is normalized to the 
momentum of the particle, thus defining the quadrupole strength 

𝑘𝑘 = 𝑒𝑒𝑒𝑒
𝜌𝜌

            (2.11) 

Numerically 

𝑘𝑘[𝑚𝑚2] = 0.2998 𝑒𝑒[𝑇𝑇 𝑚𝑚⁄ ]
𝜌𝜌[𝐺𝐺𝑒𝑒𝐺𝐺 𝑐𝑐⁄ ]         (2.12) 

If 𝑙𝑙 denotes the length of the quadrupole, its focal length 𝑓𝑓 is given by 
1
𝑓𝑓

= 𝑘𝑘 ∙ 𝑙𝑙           (2.13) 

Generally, a lens with 𝑓𝑓 >>  𝑙𝑙 is called a "thin lens" -irrespective of the absolute value 
of 𝑙𝑙. An interesting property of the quadrupole is that the horizontal force component depends 
only on the horizontal position and not on the vertical position of the particle trajectory. 
Similarly, the vertical component of the Lorentz force depends only on the vertical position. 

𝐹𝐹𝑥𝑥 = 𝑒𝑒𝑑𝑑𝐵𝐵𝜕𝜕(𝑥𝑥, 𝑧𝑧) =  −𝑒𝑒𝑑𝑑𝑔𝑔𝑥𝑥 ; 𝐹𝐹𝜕𝜕 =  −𝑒𝑒𝑑𝑑𝐵𝐵𝑥𝑥(𝑥𝑥, 𝑧𝑧) = 𝑒𝑒𝑑𝑑𝑔𝑔𝑧𝑧    (2.14) 
The important consequence is that in a so-called linear machine, containing only dipole 

and quadrupole fields, the horizontal and vertical betatron oscillations are completely 
decoupled.  
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2.5 Particle tracks and transformation matrices 
The ideal orbit of a particle in the accelerator determined by the construction of the 

accelerator is called the reference orbit. In order to determine the motion of the particles, we 
first set up the general equation of motion in the moving coordinate system 𝐾𝐾 =  {𝑥𝑥, 𝑖𝑖, 𝑧𝑧}. The 
derivation can be found. The linear equations of motion for the particles are 

𝑥𝑥′′(𝑧𝑧) + �
1

𝑅𝑅2(𝑧𝑧) − 𝑘𝑘(𝑧𝑧)�𝑥𝑥(𝑧𝑧) =
1

𝑅𝑅(𝑧𝑧)
∆𝑔𝑔
𝑔𝑔

 

𝑖𝑖′′(𝑧𝑧) + 𝑘𝑘(𝑧𝑧)𝑖𝑖(𝑧𝑧) = 0     (2.15) 
where 𝑔𝑔 denotes the reference momentum of the particles, 𝛥𝛥𝑔𝑔 the momentum 

deviation, 𝑅𝑅 (𝑧𝑧) the curvature radius and 𝑘𝑘 (𝑧𝑧) the quadrupole strength. The coordinate 𝑧𝑧 
denotes the distance traveled along the nominal path and here is the independent variable, i. 
she takes on the role of the time. The general solution of the equation of motion is a linear 
combination of a cosine-like 𝐶𝐶 (𝑧𝑧) and a sinusoidal term 𝑆𝑆 (𝑧𝑧) as well as a dispersion term 
𝐷𝐷𝑥𝑥 (𝑧𝑧) describing the momentum-dependent part of the motion. 

𝑥𝑥(𝑧𝑧) = 𝐶𝐶(𝑧𝑧)𝑥𝑥0 + 𝑆𝑆(𝑧𝑧)𝑥𝑥0′ + 𝐷𝐷𝑥𝑥(𝑧𝑧)
∆𝑔𝑔
𝑔𝑔0

  

𝑖𝑖(𝑧𝑧) = 𝐶𝐶(𝑧𝑧)𝑖𝑖0 + 𝑆𝑆(𝑧𝑧)𝑖𝑖0′       (2.16) 
where 𝑥𝑥0  =  𝑥𝑥 (0), or 𝑖𝑖0  =  𝑖𝑖 (0) the initial values of the horizontal or vertical 

positions and 𝑥𝑥0′  =  𝑥𝑥′ (0), and 𝑖𝑖0′  =  𝑖𝑖′ (0) arethe initial values of the horizontal or vertical 
vertical angle to the nominal path. Here we assume a plane setpoint trajectory such that 𝐷𝐷𝑦𝑦  =
 𝐷𝐷𝑦𝑦′  =  0. The trajectory equation can be solved analytically if the curvature radius 𝜌𝜌 (𝑧𝑧) and 
the quadrupole strength 𝑘𝑘 (𝑧𝑧) are constant. This is the case within individual components of 
beam guidance such as drift paths, dipole magnets and quadrupole magnets. The mapping of 
the particle coordinates from the beginning to the end of the component (𝑥𝑥, 𝑥𝑥′)0  →  (𝑥𝑥, 𝑥𝑥′)𝜕𝜕 
is then a linear transformation that can also be described using transfer matrices. 

�
𝑥𝑥
𝑥𝑥′

∆𝑔𝑔 𝑔𝑔0⁄
� = �

𝐶𝐶 𝑆𝑆 𝐷𝐷𝑥𝑥
𝐶𝐶′ 𝑆𝑆′ 𝐷𝐷𝑥𝑥′
0 0 1

��
𝑥𝑥
𝑥𝑥′

∆𝑔𝑔 𝑔𝑔0⁄
� 

�
𝑖𝑖
𝑖𝑖′

∆𝑔𝑔 𝑔𝑔0⁄
� = �

𝐶𝐶 𝑆𝑆 0
𝐶𝐶′ 𝑆𝑆′ 0
0 0 1

��
𝑖𝑖
𝑖𝑖′

∆𝑔𝑔 𝑔𝑔0⁄
�          (2.17) 

The matrix elements are constants that depend only on 𝑘𝑘, 𝑅𝑅 and the length 𝐿𝐿 of the 
component. The transfer matrix for a complete beam transport is the product of the transfer 
matrices of individual beam transport components. To simplify the derivation, we assume that 
the magnetic fields at the input and output of the component follow a step function [2]. 
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Figure 2.5: The complete transfer matrix of this sequence of magnetic elements is the matrix 
product 𝑀𝑀𝑡𝑡𝑠𝑠𝑡𝑡 = 𝑀𝑀8・𝑀𝑀7・𝑀𝑀6・𝑀𝑀5・𝑀𝑀4・𝑀𝑀3・𝑀𝑀2・𝑀𝑀1 . Each of the matrices 

𝑀𝑀1 . . .𝑀𝑀8 decribes a section with  K(s) = const. 

2.6 Drift 
In a drift path, no external force acts on the particles. The transformation matrix 

depends only on the length 𝐿𝐿 of the drift path. 

1
𝑅𝑅

= 0 = 𝑘𝑘 => 𝑀𝑀𝑥𝑥 = 𝑀𝑀𝑦𝑦 = 𝑅𝑅𝑑𝑑𝑟𝑟𝑑𝑑𝑓𝑓𝑡𝑡 = �
1 𝐿𝐿 0
0 1 0
0 0 1

�   (2.18) 

2.7 Dipole magnet 
A dipole magnet whose field boundaries at the input and output are at right angles to 

the reference orbit is called the sector magnet (see Figure 2.6).  

 
Figure 2.6: Schematic structure of a sector magnet with deflection radius ρ . 

𝑘𝑘 = 0;   𝛼𝛼 = 𝑠𝑠
𝑅𝑅

 => 𝑀𝑀𝑥𝑥 = 𝑅𝑅𝑑𝑑𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠 = �
cos𝛼𝛼 𝑅𝑅 sin𝛼𝛼 𝑅𝑅(1 − cos𝛼𝛼)

− 1
𝑅𝑅

sin𝛼𝛼 cos𝛼𝛼 sin𝛼𝛼
0 0 1

�  (2.19) 

𝑀𝑀𝑦𝑦 = 𝑅𝑅𝑑𝑑𝑟𝑟𝑑𝑑𝑓𝑓𝑡𝑡 = �
1 𝐿𝐿 0
0 1 0
0 0 1

�     (2.20) 
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2.8 Rectangular dipole magnet  
In practice, dipole magnets are often built straight with the magnet end plates not 

perpendicular to the central trajectory. A rectangular magnet can be derived from a sector 
magnet by superimposing at the entrance and exit a "magnetic wedge" of angle 𝛿𝛿 =  𝜑𝜑/2, as 
shown in Fig. 2.7. 

  
Figure 2.7: Rectangular dipole magnet and horizontally defocusing magnetic wedge 

The deflection angle in the magnetic wedge is 

𝛼𝛼 = ∆𝑠𝑠
𝜌𝜌

= 𝑥𝑥 𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡
𝜌𝜌

= 𝑥𝑥
𝑓𝑓
     (2.21) 

It acts as a thin defocusing lens with 1 𝑓𝑓⁄  =  (tan 𝛿𝛿) 𝜌𝜌⁄  in the horizontal plane, as a 
focusing length with the same strength in the vertical plane. The horizontal transformation 
matrix for a rectangular magnet is 

𝑀𝑀𝑥𝑥 = �
1 0 0

1
𝜌𝜌

tan 𝛿𝛿 1 0
0 0 1

�  �
cos𝜑𝜑 𝜌𝜌 sin𝜑𝜑 𝜌𝜌(1 − cos𝜑𝜑)

− 1
𝜌𝜌

sin𝜑𝜑 cos𝜑𝜑 sin𝜑𝜑
0 0 1

��
1 0 0

1
𝜌𝜌

tan 𝛿𝛿 1 0
0 0 1

�  (2.23) 

For 𝜑𝜑 ≪ 1, 𝛿𝛿 = 𝜑𝜑/2: 

𝑀𝑀𝑥𝑥 = �
1 𝜌𝜌𝑑𝑑𝑖𝑖𝑛𝑛𝜑𝜑 𝜌𝜌(1 − 𝑐𝑐𝑐𝑐𝑑𝑑𝜑𝜑)
0 1 2 tan𝜑𝜑/2 
0 0 1

�;   𝑀𝑀𝜕𝜕 = �
𝑐𝑐𝑐𝑐𝑑𝑑𝜑𝜑 𝜌𝜌𝑑𝑑𝑖𝑖𝑛𝑛𝜑𝜑 0

− 1
𝜌𝜌
𝑑𝑑𝑖𝑖𝑛𝑛𝜑𝜑 𝑐𝑐𝑐𝑐𝑑𝑑𝜑𝜑 0
0 0 1

�   (2.24) 

Note that 𝑀𝑀𝑥𝑥 is exact for 𝛿𝛿 =  𝜑𝜑/2 while  𝜑𝜑 ≪ 1 has been used for 𝑀𝑀𝜕𝜕 only. We conclude 
that in a rectangular magnet the weak horizontal focusing of a sector magnet is exactly 
compensated by the defocusing at the entrance and exit face. The magnet acquires, however, 
a weak vertical focusing of the same strength. 

2.9 Quadrupole magnets 

In a quadrupole magnet, 1
𝑅𝑅

 =  0. The focusing quadrupole can be described with the 

following matrix. 

𝑅𝑅𝑄𝑄𝜕𝜕 = �
cos√𝑘𝑘𝐿𝐿 1

√𝑘𝑘
sin√𝑘𝑘𝐿𝐿 0

−√𝑘𝑘 sin√𝑘𝑘𝐿𝐿 cos√𝑘𝑘𝐿𝐿 0
0 0 1

�     (2.25) 

As can be seen from equation (2.24), the transfer matrix results in the other level in 
each case by 𝑘𝑘 being replaced by −𝑘𝑘. That is, one focusing quadrupole magnet is defocussing 
in the other plane. The transfer matrix of the defocusing quadrupole can be written as 
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𝑅𝑅𝑄𝑄𝑄𝑄 = �
cosh√𝑘𝑘𝐿𝐿 1

√𝑘𝑘
sinh√𝑘𝑘𝐿𝐿 0

−√𝑘𝑘 sinh√𝑘𝑘𝐿𝐿 cosh√𝑘𝑘𝐿𝐿 0
0 0 1

�    (2.26) 

 
In many cases, the focal length 𝑓𝑓 of the quadrupole is much larger than the length of 

the magnet 𝑙𝑙 ≪ 1
𝑘𝑘𝑠𝑠

= 𝑓𝑓. Then the transfermartins in the "thin lens" approximation become 

easier 

𝑅𝑅𝑄𝑄𝜕𝜕 = �
1 0 0
−1

𝑓𝑓
1 0

0 0 1
�   and  𝑅𝑅𝑄𝑄𝑄𝑄 = �

1 0 0
1
𝑓𝑓

1 0
0 0 1

�     (2.27) 

However, these matrices describe a magnet of length 0. Therefore, one has to consider 
the geometric length by multiplying two drift distances with the length 𝑙𝑙 / 2. The correct 
transfer matrices close to "thin lenses" are thus. 

𝑅𝑅𝑄𝑄𝜕𝜕 =

⎝

⎛
1 − 𝑠𝑠

2𝑓𝑓
𝑙𝑙 − 𝑠𝑠2

4𝑓𝑓
0

−1
𝑓𝑓

1 − 𝑠𝑠
2𝑓𝑓

0
0 0 1⎠

⎞   and  𝑅𝑅𝑄𝑄𝑄𝑄 =

⎝

⎛
1 + 𝑠𝑠

2𝑓𝑓
𝑙𝑙 + 𝑠𝑠2

4𝑓𝑓
0

1
𝑓𝑓

1 + 𝑠𝑠
2𝑓𝑓

0
0 0 1⎠

⎞  (2.28) 

 

2.10 Solenoid magnets 
The transfer matrices of a solenoid magnet can not be divided into vertical and 

horizontal matrices, because there is a coupling between the two transverse planes in the 
solenoid magnet. The matrices given here transform the vector (𝑥𝑥, 𝑥𝑥′,𝑖𝑖,𝑖𝑖′). 

The transfer matrix upon entering the solenoids is given by [3] 

𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠,𝐴𝐴 =

⎝

⎜
⎛

1 0 0 0
0 1

𝑒𝑒𝐵𝐵
2𝑝𝑝

0
0

−𝑒𝑒𝐵𝐵 2𝑔𝑔⁄
0
0

1 0
0 1⎠

⎟
⎞

      (2.29) 

The transfer matrix within the solenoid magnet is given by 

𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠,𝐴𝐴 =

⎝

⎜
⎛

1 𝑝𝑝
𝑒𝑒𝐵𝐵

sin 𝜃𝜃 0 𝑝𝑝
𝑒𝑒𝐵𝐵

(1 − cos 𝜃𝜃)
0 cos 𝜃𝜃 0                   sin𝜃𝜃
0

− sin𝜃𝜃
− 𝑝𝑝

𝑒𝑒𝐵𝐵
(1 − cos 𝜃𝜃)

0
1            𝑝𝑝

𝑒𝑒𝐵𝐵
sin𝜃𝜃

0                 cos 𝜃𝜃⎠

⎟
⎞

    (2.30) 

with the angle 𝜃𝜃 =  2𝐿𝐿 · 𝑒𝑒𝐵𝐵
2𝑝𝑝

, where 𝐿𝐿 denotes the length of the solenoid magnet. The 

transfer matrix at the output of the solenoid magnet 
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𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠,𝐴𝐴 =

⎝

⎜
⎛

1 0 0 0
0 1 − 𝑒𝑒𝐵𝐵

2𝑝𝑝
0

0
𝑒𝑒𝐵𝐵 2𝑔𝑔⁄

0
0

1 0
0 1 ⎠

⎟
⎞

      (2.31) 

The transfer matrix for the complete solenoid magnet is calculated as the product of the 
three matrices, 𝑀𝑀𝑒𝑒𝑒𝑒𝑠𝑠  =  𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠,𝐸𝐸  ·  𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠,𝑀𝑀 ·  𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠,𝐴𝐴. In the approximation for "thin lenses", the 
transfer matrix simplifies to [3] 

𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠,𝐴𝐴 = �

1 0 0         0
−1/𝑓𝑓 1 0         0

0
0

0
0

1           0
−1/𝑓𝑓   1

�      (2.32)  

with the focal length 𝑓𝑓 = �𝑒𝑒𝐵𝐵
2𝑝𝑝
�
2
𝐿𝐿. 

 

2.11 Thin-lens approximation 
In many practical cases, the focal length f of the quadrupole magnet will be much larger 

than the length of the lens: 

𝑓𝑓 = 1
𝑘𝑘𝑠𝑠
≫ 𝑙𝑙  

Then the transfer matrices can be approximated by 

𝑀𝑀𝑥𝑥 = �
1 0 0
1
𝑓𝑓

1 0
0 0 1

�       (2.33)  

𝑀𝑀𝑍𝑍 = �
    1 0 0
− 1

𝑓𝑓
1 0

  0 0 1
�            (2.34) 

Note that these matrices describe a lens of zero length, i.e. they are derived from Eqs. 
(3.14) using 𝑙𝑙 → 0 while keeping 𝑘𝑘 · 𝑙𝑙 =  𝑐𝑐𝑐𝑐𝑛𝑛𝑑𝑑𝑡𝑡. The true length 𝑙𝑙 of the lens has to be 
recovered by two drift spaces 𝑙𝑙/2 on either side, e.g. 

𝑀𝑀𝜕𝜕 = �
1 𝑠𝑠

2
0

0 1 0
0 0 1

��
    1 0 0
−1

𝑓𝑓
1 0

    0 0 1
��

1 𝑠𝑠
2

0
0 1 0
0 0 1

� =

⎝

⎛
1 − 𝑠𝑠

2𝑓𝑓
𝑙𝑙 − 𝑠𝑠2

4𝑓𝑓
0

−1
𝑓𝑓

1 − 𝑠𝑠
2𝑓𝑓

0
0 0 1⎠

⎞  (2.35)

  
One might ask why the approximation has not been made by expanding𝑑𝑑𝑖𝑖𝑛𝑛𝜑𝜑, cos𝜑𝜑, 

etc. in Taylor series and neglecting higher powers of 𝜑𝜑. However, terminating the Taylor series 
at some power, results in a transfer matrix whose determinant is not unity. For instance, in 
third order we obtain 
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𝑀𝑀𝜕𝜕 =

⎝

⎛
1 − 𝑠𝑠

2𝑓𝑓
𝑙𝑙 − 𝑠𝑠2

6𝑓𝑓
0

−1
𝑓𝑓

1 − 𝑠𝑠
2𝑓𝑓

0
0 0 1⎠

⎞     (2.36) 

which does not fulfil 𝑑𝑑𝑒𝑒𝑡𝑡 𝑴𝑴 =  1. It can be shown that this would violate Liouville's 
Theorem of phase-space conservation.  
For accelerators in the TeV range, where 1 𝜌𝜌2⁄   << |𝑘𝑘| <<  1 𝑙𝑙2⁄  , the thin-lens 
approximation is excellent for the matrix description of the entire accelerator. 

2.12  Quadrupole doublet  
The transformation matrix of a system of dipoles, quadrupoles and drift spaces is 

obtained by multiplying the matrices of each element in the correct order. An important 
example is a quadrupole doublet consisting of a focusing quadrupole, a drift space and a 
defocusing quadrupole. Figure 2.8 shows two trajectories (1,2) suggesting a tendency of both 
horizontal and vertical focusing in this kind of arrangement. 

  
Figure 2.8: A quadrupole doublet consisting of a horizontally and a vertically focusing quadrupole 
magnet. Trajectories 1 and 2 suggest that there is a tendency of simultaneous focusing in both the 

horizontal and vertical directions. 
The focusing action arises because trajectories entering parallel to the axis have a larger 

amplitude in the focusing than in the defocusing lens. Quadrupole doublets are indeed the 
simplest means of high energy beam focusing and imaging. We shall now derive the conditions 
for simultaneous imaging in both horizontal and vertical planes, treating the quadrupoles in 
the thin-lens approximation and assuming 𝑓𝑓𝑓𝑓𝑠𝑠𝑐𝑐 =  𝑓𝑓𝑑𝑑𝑒𝑒𝑓𝑓𝑠𝑠𝑐𝑐  =  𝑓𝑓 for simplicity. The horizontal 
transfer matrix of the doublet is (for meaning of symbols see Fig. 21). 

𝑀𝑀𝑑𝑑𝑠𝑠𝑑𝑑𝑑𝑑,𝑥𝑥 = �
1 0 0
1
𝑓𝑓

1 0
0 0 1

��
1 𝑙𝑙 0
0 1 0
0 0 1

��
   1 0 0
− 1

𝑓𝑓
1 0

0 0 1
� = �

1 − 𝑠𝑠
𝑓𝑓

𝑙𝑙 0

− 𝑠𝑠
𝑓𝑓2

1 + 𝑠𝑠
𝑓𝑓

0
0 0 1

�   (2.37) 

The vertical transfer matrix is obtained if 𝑓𝑓 is replaced by −𝑓𝑓: 

𝑀𝑀𝑑𝑑𝑠𝑠𝑑𝑑𝑑𝑑,𝜕𝜕 = �
1 + 𝑠𝑠

𝑓𝑓
𝑙𝑙 0

− 𝑠𝑠
𝑓𝑓2

1 − 𝑠𝑠
𝑓𝑓

0
0 0 1

�      (2.38) 

The matrix element 𝑀𝑀21  =  𝐶𝐶′ = −  𝑙𝑙 𝑓𝑓2⁄   is called the overall refractive power of the 
system and it is seen to be focusing in both planes. Somewhat sloppily one could say that a 
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beam coming from infinity (i.e. all particles perfectly parallel to the 𝑑𝑑-axis, 𝑥𝑥0′ = 0 ) will be 
focused in both planes, as indicated by trajectories 1 and 2 in Fig. 2.8. The effective focal length 
𝑓𝑓𝑑𝑑𝑠𝑠𝑑𝑑𝑑𝑑 for these particles is 

𝑓𝑓𝑑𝑑𝑠𝑠𝑑𝑑𝑑𝑑 =
𝑓𝑓2

𝑙𝑙
 

3. Magnets field measurement methods 

3.1 Choice of measurement method  
The choice of the measurement method depends on several factors. The field strength, 

homogeneity and variation in time, as well as the required accuracy all need to be considered. 
Also the number of magnets to be measured can determine the method and equipment to be 
deployed. As a guide, Fig. 3.1 shows the accuracy which can be obtained in an absolute 
measurement as a function of the field level, using commercially available equipment. An 
order of magnitude may be gained by improving the methods in the laboratory.  

The rotating coil method is a general and accurate method to measure the field quality 
of magnets: integrated field value, higher order multipoles, and magnetic axis. Recent 
instrumentation and acquisition systems allow high bandwidth and fully automated 
measurements. This method is the obvious choice for normal quadrupole magnets, and for 
superconducting magnets having circular apertures and where beam optics considerations 
require unprecedented precision in the field quality.  

These various methods complement each other. They are complemented by the use of 
Hall plates for local measurements and of NMR based instruments for high absolute accuracy 
and calibration. A cross-check between these various methods should be used whenever 
possible to ascertain precision in magnet measurements. 

 
Fig. 3.1 Measurement methods: accuracies and ranges 

3.2 The Hall generator method 
 E.H. Hall discovered in 1879 that a very thin metal strip immersed in a transverse 

magnetic field and carrying a current developed a voltage mutually at right angles to the 
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current and field that opposed the Lorentz force on the electrons. In 1910 the first magnetic 
measurements were performed using this effect. It is a simple and fast measurement method, 
providing relatively good accuracy, and therefore the most commonly used in large-scale field 
mapping. The accuracy can be improved at the expense of measurement speed. 

The Hall generator provides an instant measurement, uses very simple electronic 
measurement equipment and offers a compact probe, suitable for point measurements. A large 
selection of this type of gaussmeter is now commercially available. The probes can be mounted 
on relatively light positioning gear. Considerable measurement time may be gained by 
mounting Hall generators in modular multi-probe arrays and applying multiplexed voltage 
measurement. Also simultaneous measurements in two or three dimensions may be carried 
out with suitable probe arrays. The wide dynamic range and the possibility of static operation 
are other attractive features.  

However, several factors set limits on the obtainable accuracy. The most serious is the 
temperature coefficient of the Hall voltage. Temperature stabilization is usually employed in 
order to overcome this problem but increases the size of the probe assembly. The temperature 
coefficient may also be taken into account in the probe calibration by monitoring the 
temperature during measurements. It depends, however, also on the level of the magnetic 
field, so relatively complex calibration tables are needed. Another complication can be that of 
the planar Hall effect, which makes the measurement of a weak field component normal to 
the plane of the Hall generator problematic if a strong field component is present parallel to 
this plane. This effect limits the use in fields of unknown geometry and in particular its use for 
determination of field geometry. 

Last but not least is the problem of the nonlinearity of the calibration curve, since the 
Hall coefficient is a function of the field level. The Hall generator of the cruciform type shows 
a better linearity and has a smaller active surface than the classical rectangular generator. Its 
magnetic center is, therefore, better defined, so it is particularly well suited for measurements 
in strongly inhomogeneous fields. Special types, which have a smaller temperature 
dependence, are available on the market, but these show a lower sensitivity. 

The measurement of the Hall voltage sets a limit of about 20 µ𝑇𝑇 on the sensitivity and 
resolution of the measurement, if conventional DC excitation is applied to the probe. This is 
mainly caused by thermally induced voltages in cables and connectors. The sensitivity can be 
improved considerably by application of a.c. excitation. A good accuracy at low fields can then 
be achieved by employing synchronous detection techniques for the measurement of the Hall 
voltage. Special Hall generators for use at cryogenic temperatures are also commercially 
available. Although they show a very low temperature coefficient, they unfortunately reveal 
an additional problem at low temperatures. The so-called "Shubnikov-de Haas effect" shows 
up as a field dependent oscillatory effect of the Hall coefficient which may amount to about 
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one per cent at high fields, depending on the type of semiconductor used for the Hall 
generator. This adds a serious complication to the calibration. The problem may be solved by 
locating the Hall generator in a heated anticryostat. Altogether, the Hall generator has proved 
very useful for measurements at low temperature. 

Hall generators are usually calibrated in a magnet in which the field is measured 
simultaneously using the nuclear magnetic resonance technique. The calibration curve is most 
commonly represented in the form of a polynomial of relatively high order (7 or 9) fitted to a 
sufficiently large number of calibration points. This representation has the advantage of a 
simple computation of the magnetic induction from a relatively small table of coefficients.  

A physically better representation is the use of a piecewise cubic interpolation through 
a sufficient number of calibration points which were measured with high precision. This can 
be done in the form of a simple Lagrange interpolation or even better with a cubic spline 
function. The advantage of the spline function comes from its minimum curvature and its "best 
approximation" properties. The function adjusts itself easily to nonanalytic functions and is 
very well suited to interpolation from tables of experimental data. The function is defined as a 
piecewise polynomial of third degree passing through the calibration points such that the 
derivative of the function is continuous at these points. Very efficient algorithms can be found 
in the literature. The calculation of the polynomial coefficients may be somewhat time-
consuming but need only be done once at calibration time. The coefficients (typically about 
60 for the bipolar calibration of a cruciform Hall generator) can be easily stored in a 
microprocessor device and the subsequent field calculations are very fast. The quality of the 
calibration function can be verified from field values measured between the calibration points. 
A well designed Hall-probe assembly can be calibrated to a long term accuracy of 100 𝑔𝑔𝑔𝑔𝑚𝑚. 
The stability may be considerably improved by powering the Hall generator permanently and 
by keeping its temperature constant. 

3.3 Rotating coil method 
The harmonic or rotating coil technique gives high resolution and measures in one coil 

revolution all relevant parameters of any accelerator magnet. Both theoretical and 
experimental developments allow one to confidently design sophisticated instruments 
measuring with high bandwidth and precision the full harmonic content of a magnet. It is the 
best method for measuring higher order multipoles within a well-established theoretical 
frame, in particular of superconducting and quadrupole magnets having circular apertures.  

3.3.1 Description of the harmonic coil method 
A perfect dipole magnet gives a constant vertical field everywhere in the useful 

aperture. The flux enclosed by the simple coil described in Fig. 3.2 will be, considering an 
infinitely thin winding, 
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Ψ(𝜃𝜃) = 𝑁𝑁𝑡𝑡 ∙ 𝐿𝐿 ∙ ∫ 𝐵𝐵1 ∙ cos 𝜃𝜃 ∙ 𝑑𝑑𝑅𝑅𝑅𝑅2
𝑅𝑅1

      (3.1) 

𝑁𝑁𝑡𝑡 and 𝐿𝐿 are respectively the number of turns and length of the measuring coil. The coil 
is supposed to be shorter than the magnet. The coil’s effective surface can be calibrated 
independently and is given by 

Σ𝑐𝑐𝑠𝑠𝑑𝑑𝑠𝑠 = 𝑁𝑁𝑡𝑡 ∙ 𝐿𝐿 ∙ ∫ 𝑑𝑑𝑅𝑅𝑅𝑅2
𝑅𝑅1

=  𝑁𝑁𝑡𝑡 ∙ 𝐿𝐿 ∙ (𝑅𝑅2 − 𝑅𝑅1)    (3.2) 

The use of a voltage integrator connected to the measuring coil makes it possible to 
eliminate the time coordinate in the induction law of Faraday. The voltage integrator read as 
a function of the angle gives the flux directly from the zero angle where it is reset. The constant 
of integration is irrelevant for this method. 

  
Fig. 3.2: 2D representation of the flux seen by a simple coil rotating in a dipole field 

The units of Eq. (3.1) are 
Ψ = volt ∙ sec = 𝑡𝑡𝑒𝑒𝑑𝑑𝑙𝑙𝑔𝑔 ∙ 𝑚𝑚2 = 𝑤𝑤𝑒𝑒𝑤𝑤𝑒𝑒𝑟𝑟      (3.3) 

It is important to realize that the harmonic coil method does not make use of the voltage 
integrated over a given time, but rather over a given angular interval. The advantage of using 
a voltage integrator that can be externally triggered is that it eliminates to the first order the 
problem of a constant speed of rotation. A real system in fact measures differences of fluxes 
between two incremental angular positions. The angular encoder mounted on one coil end is 
a fundamental piece of equipment. The integrator is triggered by this encoder and collects 
incremental fluxes 𝛿𝛿𝛹𝛹𝑘𝑘, and the left part of Eq. (3.1) becomes 

Ψ(θi) −Ψ(θ0) = ∑ 𝛿𝛿Ψk𝑑𝑑
𝑘𝑘=1       (3.4) 

with 
𝛿𝛿Ψk =  Ψ(θk) −  Ψ(θk−1)      (3.5) 

3.3.2 Measuring the multipoles by rotating coils 
The power of the harmonic coil method is its ability to measure any type of 2D magnetic 

field. It can be demonstrated that a rotating coil measures the 2D field integrated over its 
length as long as the field component parallel to the rotation axis is zero on the two coil ends. 
The complex equation to best describe this 2D field is 

𝐵𝐵(𝑥𝑥 + 𝑖𝑖 ∙ 𝑖𝑖) = 𝐵𝐵𝑦𝑦(𝑧𝑧) + 𝑖𝑖 ∙ 𝐵𝐵𝑥𝑥(𝑧𝑧) = ∑ 𝐶𝐶𝑛𝑛 ∙ �
𝜕𝜕
𝑅𝑅𝑟𝑟
�
𝑛𝑛−1

∝
𝑛𝑛=1     (3.6) 
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The components 𝐶𝐶𝑛𝑛 = 𝐵𝐵𝑛𝑛  +  𝑖𝑖𝐴𝐴𝑛𝑛 are the normal and skew multipoles of the field. By 
definition for accelerator magnets, the normal components indicate a vertical field in the 
horizontal plane whilst the ‘skew’ terms apply for an horizontal field. The 𝐶𝐶𝑛𝑛 are in tesla at the 
reference radius 𝑅𝑅𝑟𝑟 . Figure 3.3 shows the field lines for normal and skew dipoles (𝐶𝐶1) and 
quadrupoles (𝐶𝐶2). 

The field quality is usually described as errors relative to the main field component 𝐵𝐵𝑀𝑀 
(𝑀𝑀 =  1 for a dipole, 𝑀𝑀 =  2 for a quadrupole) at the reference radius 𝑅𝑅𝑟𝑟. These errors are 
called ‘units’ and are given by 

𝑐𝑐𝑛𝑛 = 𝑤𝑤𝑛𝑛 + 𝑖𝑖 ∙ 𝑔𝑔𝑛𝑛 = 104 𝐶𝐶𝑛𝑛
𝐵𝐵𝑀𝑀

      (3.7) 

  

  
Fig. 3.3: Field lines of normal and skew dipole and quadrupole magnets 

The reference radius 𝑅𝑅𝑟𝑟 is an important concept for accelerator magnets having 
apertures much smaller than one metre. 𝑅𝑅𝑟𝑟 corresponds in practice to 

• the useful aperture for the beam,  
• 2/3 of the yoke aperture in resistive magnets, 
• 2/3 of the coil aperture in superconducting magnets,  
• the radius where the multipoles relative to the main field, the𝑐𝑐𝑛𝑛 in Eq. (3.7), 

have the same order of magnitude in a real magnet. 
It is important to carefully choose this reference radius at the beginning of a project. It 

will intervene in the discussions between all actors involved: beam optic physicists, magnet 
designers, measurement crew, and data analysis teams. 

The voltage integrated over a simple rotating coil described in Fig. 3.2 and rotating in 
any 2D field will therefore be determined by the time derivative of 

Ψ(𝑧𝑧) = 𝑁𝑁𝑡𝑡 ∙ 𝐿𝐿 ∙ 𝑅𝑅𝑒𝑒 ∫ 𝐵𝐵(𝑧𝑧) ∙ 𝑑𝑑𝑧𝑧𝑅𝑅2
𝑅𝑅1

     (3.8) 

Since the coil rotates 
𝑧𝑧 = 𝑥𝑥 + 𝑖𝑖 ∙ 𝑖𝑖 = 𝑅𝑅 ∙ 𝑒𝑒𝑑𝑑𝑖𝑖(𝑡𝑡)      (3.9) 

and by applying Eq. (3.6) and integrating it over 𝑑𝑑𝑅𝑅 
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Ψ(θ = ω ∙ t) = 𝑅𝑅𝑒𝑒 �∑ 𝑁𝑁𝑡𝑡 ∙ 𝐿𝐿 ∙
𝑅𝑅2𝑛𝑛−𝑅𝑅1𝑛𝑛

𝑛𝑛∙𝑅𝑅𝑟𝑟𝑛𝑛−1
∙ 𝐶𝐶𝑛𝑛 ∙ 𝑒𝑒𝑑𝑑𝑛𝑛𝑖𝑖 ∝

𝑛𝑛=1 �     (3.10) 

This allows a formal separation between what belongs to 
– the measured field components 𝐶𝐶𝑛𝑛, 
– the time dependence of the signal 𝑒𝑒𝑑𝑑𝑛𝑛𝑖𝑖(𝑡𝑡), 
– the coil sensitivity factor 𝐾𝐾𝑛𝑛 defined as 

𝐾𝐾𝑛𝑛 = 𝑁𝑁𝑡𝑡 ∙ 𝐿𝐿 ∙
𝑅𝑅2𝑛𝑛−𝑅𝑅1𝑛𝑛

𝑛𝑛∙𝑅𝑅𝑟𝑟𝑛𝑛−1
        (3.11) 

The 𝐾𝐾𝑛𝑛 are calculated once for each measuring coil used. They can be complex numbers 
in the case of tangential coils, or coils not perfectly aligned radially. These calculations are 
substantial if the wires can no longer be considered point-like. Their values can be improved 
by individual calibrations. 

The multipoles of the field are directly given by the Fourier analysis coefficients 𝛹𝛹𝑛𝑛 of 
the integrated voltage over a coil turn 𝛹𝛹(𝜃𝜃): 

𝛹𝛹𝑛𝑛 = 𝐾𝐾𝑛𝑛 ∙ 𝐶𝐶𝑛𝑛 =  𝐾𝐾𝑛𝑛 ∙ (𝐵𝐵𝑛𝑛 + 𝑖𝑖𝐴𝐴𝑛𝑛)     (3.12) 

3.3.3 Errors associated with the harmonic coil method 
Mechanical or electronic imperfections mainly degrade the measurement of the ‘higher 

order’ multipoles, i.e., those with harmonic numbers higher than the magnet multipole order. 
The three main error sources will be studied in detail:  

– voltage integrator offset coupled with irregular rotation rate of the coil, 
– error in the coil angle measurement due either to the angular encoder or to 

torsions of the coil shaft during rotation, 
– instability or movement of the rotation axis of the coil shaft due to gravity, 

bearings quality, or vibrations. 
Schemes of compensation coil arrays, connected in opposition, have been developed to 

remove the signal coming from the magnet main multipole thus allowing the increase of the 
amplification factor at the input of the integrator. More importantly, these compensation coil 
assemblies remove nonlinear coupling coming from the main harmonic and degrading the 
high-order harmonic measurement. 
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4. Dipole and quadrupole measurements with compensated rotating coil 

4.1 INTRODUCTION 
 Measurement of the Vector Potential   
 Consider the flux enclosed by a pair of coils.  The voltage excited in a closed loop is 

proportional to the change in the total magnetic flux.  The circuitry for collecting the data 
from a rotating coil includes an integrator.  The digital integrator consists of a voltage to 
frequency converter and an up-down counter (which counts pulses).  The output from the 
integrator is latched at fixed angular positions, triggered by pulses at equal angular intervals 
from a shaft encoder.  A motor is used to rotate the coil at approximately uniform rotational 
velocity. The output from the integrator will be a cosine curve with periodicity N, where N is 
the index of the fundamental magnetic field. 

  A computer collects the data from the integrator triggered by pulses from the shaft 
encoder.  It also controls the magnet power supply, the motor rotating the coil, and collects 
the output of a shunt or current transductor which monitors the current from the power 
supply.  The computer archives the raw data, performs a Fourier analysis and reduces the data 
and tabulates multipole errors, normalized to the fundamental and the phases of the multipole 
errors.  

  The multipole errors are typically small compared to the fundamental signal.   
𝐵𝐵𝑛𝑛

|𝐵𝐵𝑁𝑁|
≤ 1 × 10−3 at the magnet aperture 

Thus, the voltage signal from error multipoles is typically substantially less than 1x10-3 
of the voltage signal from the fundamental field.  Therefore, a compensated (or bucked) coil 
configuration is devised which is insensitive to the fundamental field and measures only the 
error signals.   

 The geometry of the typical compensated coil is described in the following Figure 4.1:   

 
Figure 4.1: The geometry of the typical compensated coil. Mouter and Minner are the number of turns 

of the outer and inner coils, respectively. 
 

 r1

 r2

r3

r4

M inner turnsM inner turns M outer turnsM outer turns
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4.2 Voltage from the Measurement Coil       
 The integrated output voltage from a rotating coil in a magnetic field is a function of 

the magnetic vector potential at the locations of the windings of the coil, the magnet effective 
length and the number of turns in the measurement coil. In the following discussion, the outer 
coils are located at radii r1 and r3 and sweep the field at complex coordinates 𝑧𝑧1 and 𝑧𝑧3.  The 
inner coils are located at radii r2 and r4 and sweep the field at complex coordinates 𝑧𝑧2 and 𝑧𝑧4.   

4.2. Outer Coil   
Φ𝑠𝑠𝑑𝑑𝑡𝑡𝑒𝑒𝑟𝑟 = 𝑛𝑛𝑛𝑛𝑡𝑡𝑒𝑒𝑔𝑔𝑟𝑟𝑔𝑔𝑡𝑡𝑒𝑒𝑑𝑑 𝑀𝑀𝑐𝑐𝑙𝑙𝑡𝑡𝑔𝑔𝑔𝑔𝑒𝑒 = 𝑀𝑀𝑠𝑠𝑑𝑑𝑡𝑡𝑒𝑒𝑟𝑟𝐿𝐿𝑒𝑒𝑓𝑓𝑓𝑓 Δ𝐴𝐴 = 𝑀𝑀𝑠𝑠𝑑𝑑𝑡𝑡𝑒𝑒𝑟𝑟𝐿𝐿𝑒𝑒𝑓𝑓𝑓𝑓𝑅𝑅𝑒𝑒[𝐹𝐹(𝑧𝑧1) − 𝐹𝐹(𝑧𝑧3)] 

𝐹𝐹(𝑧𝑧) = �𝐶𝐶𝑛𝑛𝑧𝑧𝑛𝑛 = � |𝐶𝐶𝑛𝑛| 𝑒𝑒𝑑𝑑𝜓𝜓𝑛𝑛𝑟𝑟𝑛𝑛𝑒𝑒𝑑𝑑𝑛𝑛𝑖𝑖 = �|𝐶𝐶𝑛𝑛|𝑟𝑟𝑛𝑛𝑒𝑒𝑑𝑑(𝑛𝑛𝑖𝑖+𝜓𝜓𝑛𝑛) 

𝐴𝐴 = 𝑅𝑅𝑒𝑒 𝐹𝐹(𝑧𝑧) = 𝑅𝑅𝑒𝑒 ��|𝐶𝐶𝑛𝑛|𝑟𝑟𝑛𝑛𝑒𝑒𝑑𝑑(𝑛𝑛𝑖𝑖+𝜓𝜓𝑛𝑛)� = �|𝐶𝐶𝑛𝑛|𝑟𝑟𝑛𝑛 cos(𝑛𝑛𝜃𝜃 + 𝜓𝜓𝑛𝑛) 

 
Substituting 

Φ𝑠𝑠𝑑𝑑𝑡𝑡𝑒𝑒𝑟𝑟 = 𝑀𝑀𝑠𝑠𝑑𝑑𝑡𝑡𝑒𝑒𝑟𝑟𝐿𝐿𝑒𝑒𝑓𝑓𝑓𝑓𝑅𝑅𝑒𝑒[𝐹𝐹(𝑧𝑧1) − 𝐹𝐹(𝑧𝑧3)] = 𝑀𝑀𝑠𝑠𝑑𝑑𝑡𝑡𝑒𝑒𝑟𝑟𝐿𝐿𝑒𝑒𝑓𝑓𝑓𝑓�|𝐶𝐶𝑛𝑛|(𝑟𝑟1𝑛𝑛 − 𝑟𝑟3𝑛𝑛) cos(𝑛𝑛𝜃𝜃 + 𝜓𝜓𝑛𝑛) 

For each term in the expansion;   
Φ𝑛𝑛−𝑠𝑠𝑑𝑑𝑡𝑡𝑒𝑒𝑟𝑟 = 𝑀𝑀𝑠𝑠𝑑𝑑𝑡𝑡𝑒𝑒𝑟𝑟𝐿𝐿𝑒𝑒𝑓𝑓𝑓𝑓|𝐶𝐶𝑛𝑛|(𝑟𝑟1𝑛𝑛 − 𝑟𝑟3𝑛𝑛) cos(𝑛𝑛𝜃𝜃 + 𝜓𝜓𝑛𝑛) 

 If one takes the Fourier expansion of the measured integrated voltage from the outer 
coil, the expansion is written;  

Φ =
a0
2

+ �𝑔𝑔𝑛𝑛 cos𝑛𝑛𝜃𝜃 + 𝑤𝑤𝑛𝑛 sin𝑛𝑛𝜃𝜃
∝

𝑛𝑛=1

 

Φn = 𝑔𝑔𝑛𝑛 cos𝑛𝑛𝜃𝜃 + 𝑤𝑤𝑛𝑛 sin𝑛𝑛𝜃𝜃 
|Φn| = �𝑔𝑔𝑛𝑛2 + 𝑤𝑤𝑛𝑛2 

 
But  Φ𝑛𝑛−𝑠𝑠𝑑𝑑𝑡𝑡𝑒𝑒𝑟𝑟 = 𝑀𝑀𝑠𝑠𝑑𝑑𝑡𝑡𝑒𝑒𝑟𝑟𝐿𝐿𝑒𝑒𝑓𝑓𝑓𝑓|𝐶𝐶𝑛𝑛|(𝑟𝑟1𝑛𝑛 − 𝑟𝑟3𝑛𝑛) cos(𝑛𝑛𝜃𝜃 + 𝜓𝜓𝑛𝑛) 

cos(𝑛𝑛𝜃𝜃 + 𝜓𝜓𝑛𝑛) = cos𝑛𝑛𝜃𝜃 cos𝜓𝜓𝑛𝑛 − sin𝑛𝑛𝜃𝜃 sin𝜓𝜓𝑛𝑛. 
Substituting;   

Φ𝑛𝑛−𝑠𝑠𝑑𝑑𝑡𝑡𝑒𝑒𝑟𝑟 = 𝑀𝑀𝑠𝑠𝑑𝑑𝑡𝑡𝑒𝑒𝑟𝑟𝐿𝐿𝑒𝑒𝑓𝑓𝑓𝑓|𝐶𝐶𝑛𝑛|(𝑟𝑟1𝑛𝑛 − 𝑟𝑟3𝑛𝑛)(cos𝑛𝑛𝜃𝜃 cos𝜓𝜓𝑛𝑛 − sin𝑛𝑛𝜃𝜃 sin𝜓𝜓𝑛𝑛) 
From the Fourier analyzed  

Φn = 𝑔𝑔𝑛𝑛 cos𝑛𝑛𝜃𝜃 + 𝑤𝑤𝑛𝑛 sin𝑛𝑛𝜃𝜃 
Equating the coefficients in the Fourier analysis of the integrator output.   
𝑔𝑔𝑛𝑛 = 𝑀𝑀𝑠𝑠𝑑𝑑𝑡𝑡𝑒𝑒𝑟𝑟𝐿𝐿𝑒𝑒𝑓𝑓𝑓𝑓|𝐶𝐶𝑛𝑛|(𝑟𝑟1𝑛𝑛 − 𝑟𝑟3𝑛𝑛) cos𝜓𝜓𝑛𝑛   
𝑤𝑤𝑛𝑛 = 𝑀𝑀𝑠𝑠𝑑𝑑𝑡𝑡𝑒𝑒𝑟𝑟𝐿𝐿𝑒𝑒𝑓𝑓𝑓𝑓|𝐶𝐶𝑛𝑛|(𝑟𝑟1𝑛𝑛 − 𝑟𝑟3𝑛𝑛) sin𝜓𝜓𝑛𝑛   

tan𝜓𝜓𝑛𝑛 =
sin𝜓𝜓𝑛𝑛
cos𝜓𝜓𝑛𝑛

=
− 𝑤𝑤𝑛𝑛
𝑀𝑀𝑠𝑠𝑑𝑑𝑡𝑡𝑒𝑒𝑟𝑟𝐿𝐿𝑒𝑒𝑓𝑓𝑓𝑓|𝐶𝐶𝑛𝑛|(𝑟𝑟1𝑛𝑛 − 𝑟𝑟3𝑛𝑛)

𝑔𝑔𝑛𝑛
𝑀𝑀𝑠𝑠𝑑𝑑𝑡𝑡𝑒𝑒𝑟𝑟𝐿𝐿𝑒𝑒𝑓𝑓𝑓𝑓|𝐶𝐶𝑛𝑛|(𝑟𝑟1𝑛𝑛 − 𝑟𝑟3𝑛𝑛)

= −
𝑤𝑤𝑛𝑛
𝑔𝑔𝑛𝑛

 

𝜓𝜓𝑛𝑛 = arctan(−𝑤𝑤𝑛𝑛/𝑔𝑔𝑛𝑛)  



26 
  

∣ Φ𝑛𝑛−𝑠𝑠𝑑𝑑𝑡𝑡𝑒𝑒𝑟𝑟 ∣= �𝑔𝑔𝑛𝑛2 + 𝑤𝑤𝑛𝑛2 = 𝑀𝑀𝑠𝑠𝑑𝑑𝑡𝑡𝑒𝑒𝑟𝑟𝐿𝐿𝑒𝑒𝑓𝑓𝑓𝑓|𝐶𝐶𝑛𝑛|(𝑟𝑟1𝑛𝑛 − 𝑟𝑟3𝑛𝑛) 

4.2.3 The Fundamental Field 
Measurements of the fundamental field (n=N) are made using the outer coil.   
ΦN = 𝑀𝑀𝑠𝑠𝑑𝑑𝑡𝑡𝑒𝑒𝑟𝑟𝐿𝐿𝑒𝑒𝑓𝑓𝑓𝑓|𝐶𝐶𝑛𝑛|(𝑟𝑟1𝑁𝑁 − 𝑟𝑟3𝑁𝑁)   
 We define the following terms.   
𝛽𝛽1 ≡

𝑟𝑟3
𝑟𝑟1

   where 𝛽𝛽1 is a positive number. 

𝑆𝑆𝑛𝑛 ≡ (1 − (−𝛽𝛽1)𝑁𝑁) 
|ΦN| = 𝑀𝑀𝑠𝑠𝑑𝑑𝑡𝑡𝑒𝑒𝑟𝑟𝐿𝐿𝑒𝑒𝑓𝑓𝑓𝑓|𝐶𝐶𝑛𝑛|(𝑟𝑟1𝑁𝑁 − 𝑟𝑟3𝑁𝑁) = 𝑀𝑀𝑠𝑠𝑑𝑑𝑡𝑡𝑒𝑒𝑟𝑟𝐿𝐿𝑒𝑒𝑓𝑓𝑓𝑓|𝐶𝐶𝑛𝑛|(𝑟𝑟1𝑁𝑁 − 𝑟𝑟3𝑁𝑁)

= 𝑀𝑀𝑠𝑠𝑑𝑑𝑡𝑡𝑒𝑒𝑟𝑟𝐿𝐿𝑒𝑒𝑓𝑓𝑓𝑓|𝐶𝐶𝑛𝑛|𝑟𝑟1𝑁𝑁(1 − (−𝛽𝛽1)𝑁𝑁) = 𝑀𝑀𝑠𝑠𝑑𝑑𝑡𝑡𝑒𝑒𝑟𝑟𝐿𝐿𝑒𝑒𝑓𝑓𝑓𝑓|𝐶𝐶𝑛𝑛|𝑟𝑟1𝑁𝑁𝑆𝑆𝑛𝑛 

|𝐶𝐶𝑁𝑁| =
|ΦN|

𝑀𝑀𝑠𝑠𝑑𝑑𝑡𝑡𝑒𝑒𝑟𝑟𝐿𝐿𝑒𝑒𝑓𝑓𝑓𝑓 𝑟𝑟1𝑁𝑁𝑆𝑆𝑛𝑛
 

|𝐻𝐻𝑁𝑁|𝑟𝑟1𝐿𝐿𝑒𝑒𝑓𝑓𝑓𝑓 = 𝑁𝑁 |𝐶𝐶𝑁𝑁|𝑟𝑟1𝑁𝑁−1𝐿𝐿𝑒𝑒𝑓𝑓𝑓𝑓 

|𝐻𝐻𝑁𝑁|𝑟𝑟1𝐿𝐿𝑒𝑒𝑓𝑓𝑓𝑓 =
𝑁𝑁|ΦN|

𝑟𝑟1𝑀𝑀𝑠𝑠𝑑𝑑𝑡𝑡𝑒𝑒𝑟𝑟𝑆𝑆𝑛𝑛
 

We check the units.   

|𝐻𝐻𝑁𝑁|𝑟𝑟1𝐿𝐿𝑒𝑒𝑓𝑓𝑓𝑓 = 𝑇𝑇𝑚𝑚 =
𝑊𝑊
𝑚𝑚2𝑚𝑚 =

𝑀𝑀𝑑𝑑𝑒𝑒𝑐𝑐.
𝑚𝑚

 

𝑁𝑁|ΦN|
𝑟𝑟1𝑀𝑀𝑠𝑠𝑑𝑑𝑡𝑡𝑒𝑒𝑟𝑟𝑆𝑆𝑛𝑛

=
𝑀𝑀𝑑𝑑𝑒𝑒𝑐𝑐.
𝑚𝑚

 

 For the magnets which are most usually measured (the dipole, quadrupole and 
sextupole);  

𝑆𝑆1 = 1 + 𝛽𝛽1;       𝑆𝑆2 = 1 − (−𝛽𝛽1)2;        𝑆𝑆3 = 1 − (−𝛽𝛽1)3  

4.2.4 Quadrupole Measurement Coil   
 For a quadrupole coil, it is desirable to make s2 and 𝑑𝑑1 = 0.   

𝑑𝑑2 = {1 − (−𝛽𝛽1)2 − 𝜇𝜇𝜌𝜌2(1 − (−𝛽𝛽2)2)} = 1 − 𝛽𝛽12 − 𝜇𝜇𝜌𝜌2(1 − 𝛽𝛽22) = 0 
𝑑𝑑1 = �1 − (−𝛽𝛽1) − 𝜇𝜇𝜌𝜌�1 − (−𝛽𝛽2)�� = 1 + 𝛽𝛽1 − 𝜇𝜇𝜌𝜌(1 + 𝛽𝛽2) = 0 

 The “classical” geometry which satisfies these constraints has the following parameters; 
𝛽𝛽1 = 0.5; 𝛽𝛽2 = 0.2;   𝜌𝜌 = 0.625;   𝜇𝜇 = 2  

 The balance of the bucked (i.e. compensated) sensitivities are computed and graphed.   
𝑑𝑑𝑛𝑛 = {1 − (−𝛽𝛽1)𝑛𝑛 − 𝜇𝜇𝜌𝜌𝑛𝑛(1 − (−𝛽𝛽2)𝑛𝑛)} 
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Figure 4.3: Quadrupole coil sensitivities with respect to the multipole content 

 
 This coil configuration can also be used to measure a dipole magnet as shown in Figure 

4.3.  Since the coil has no quadrupole sensitivity, a quadrupole error must be evaluated using 
the “uncompensated” configuration.  Since a quadrupole multipole is NOT an allowed 
multipole for a symmetric dipole magnet, this does not usually present a serious problem.  
However, if the dipole design constraints requires that the symmetry conditions be violated 
(e.g. a “C” shaped dipole), the evaluation of a small quadrupole error may be marginal.   

One needs to design and fabricate the coil such that the electrical signal obtained from 
the integrator is sufficiently large for the sensitivity of the instrument.  The level of electrical 
noise in a system is of the order of a few 𝜇𝜇Volts.  Thus, in order to keep the signal above the 
𝜇𝜇Volt range, the measurement coils are wound with many turns (typically > 100). 
The Normalized Multipole Error Spectrum   

 The following figure illustrates a typical “compensated” signal from an integrator.  A 
drift component continues to exist.  Also, although the signals from the “higher frequency” 
signals can be easily detected, the signal is still dominated by the fundamental signal.  This is 
because the desired coil geometry cannot be exactly fabricated and some fundamental signal 
continues to exist.   

 A “figure of merit”, defined as the bucking ratio, is typically computed as part of the 
reduced data.  This is the ratio of the electrical signal from the fundamental field from the 
uncompensated and compensated configuration and describes how closely the measurement 
coil was built to its specified design.  A higher value for this bucking ratio indicates how well 
the fundamental signal has been reduced.   

𝐵𝐵𝐵𝐵𝑐𝑐𝑘𝑘𝑖𝑖𝑛𝑛𝑔𝑔 𝑟𝑟𝑔𝑔𝑡𝑡𝑖𝑖𝑐𝑐 =
|Φ|N−unbucked 

|𝜙𝜙|𝑁𝑁−𝑑𝑑𝑑𝑑𝑐𝑐𝑘𝑘𝑒𝑒𝑑𝑑
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 For a carefully fabricated coil, bucking ratios ≈ 400 can be achieved.  This means that 

for a high quality magnet �𝐵𝐵𝑛𝑛
𝐵𝐵𝑁𝑁
� ≤ 10−3, the ratio of the fundamental field to the measured error 

field is ≈ 2.5.  A typical raw data output for a quadrupole is shown in the following Figure 4.4.  
It can be seen that, although the error fields are apparent, the signal is still dominated by the 
remaining fundamental field with a periodicity of two.   

 
Figure 4.4: A typical raw data output for a quadrupole 

 
 After the drift is subtracted from the data, the cosine and sine coefficients of the Fourier 

expansion for the integrated signal from the “bucked” signal from the integrator can be 
computed.   

𝜙𝜙 =
a0
2

+ �𝑔𝑔𝑛𝑛 cos𝑛𝑛𝜃𝜃 + 𝑤𝑤𝑛𝑛 sin𝑛𝑛𝜃𝜃
∝

𝑛𝑛=1

 

𝜙𝜙n = 𝑔𝑔𝑛𝑛 cos𝑛𝑛𝜃𝜃 + 𝑤𝑤𝑛𝑛 sin𝑛𝑛𝜃𝜃 
 
 The expansion can also be expressed in terms of only the cosine terms with a phase 

angle.   
 
 

𝜙𝜙 − 𝑡𝑡0
2

= ∑ |𝜙𝜙𝑛𝑛| cos( 𝑛𝑛𝜃𝜃 + 𝜆𝜆𝑛𝑛) ∝
𝑛𝑛=1 where  |𝜙𝜙n| = �𝑔𝑔𝑛𝑛2 + 𝑤𝑤𝑛𝑛2;  𝜆𝜆𝑛𝑛 = arctan− 𝑑𝑑𝑛𝑛

𝑡𝑡𝑛𝑛
  

 For the unbucked configuration; |𝐻𝐻𝑁𝑁|𝑟𝑟1𝐿𝐿𝑒𝑒𝑓𝑓𝑓𝑓 = 𝑁𝑁|ΦN|
𝑟𝑟1𝑀𝑀𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑆𝑆𝑛𝑛

   

 For the bucked configuration; |𝐻𝐻𝑛𝑛|𝑟𝑟1𝐿𝐿𝑒𝑒𝑓𝑓𝑓𝑓 = 𝑛𝑛|𝜑𝜑𝑛𝑛−𝑏𝑏𝑜𝑜𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏|
𝑟𝑟1𝑀𝑀𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑆𝑆𝑛𝑛

  

 Thus the measured normalized multipoles are; �𝐻𝐻𝑛𝑛
𝐻𝐻𝑁𝑁
�
𝑟𝑟1

= 𝑛𝑛|𝜑𝜑𝑛𝑛|𝑆𝑆𝑛𝑛
𝑁𝑁|Φ𝑁𝑁|𝑆𝑆𝑛𝑛
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4.2.5 Dipole Measurements 
 When the coil is used to measure a dipole magnets, the first error harmonic is the 

quadrupole field.  Since in the bucked configuration, the sensitivity is zero, the quadrupole 
error harmonic must be measured with the unbucked coil.   

|𝐻𝐻𝑁𝑁|𝑟𝑟1𝐿𝐿𝑒𝑒𝑓𝑓𝑓𝑓 =
𝑁𝑁𝜙𝜙𝑁𝑁𝑚𝑚𝑡𝑡𝑒𝑒𝑛𝑛𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑𝑒𝑒
𝑟𝑟1𝑀𝑀𝑠𝑠𝑑𝑑𝑡𝑡𝑒𝑒𝑟𝑟𝑆𝑆𝑁𝑁

=> |𝐻𝐻1|𝑟𝑟1𝐿𝐿𝑒𝑒𝑓𝑓𝑓𝑓 =
𝜙𝜙1𝑚𝑚𝑡𝑡𝑒𝑒𝑛𝑛𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑𝑒𝑒
𝑟𝑟1𝑀𝑀𝑠𝑠𝑑𝑑𝑡𝑡𝑒𝑒𝑟𝑟𝑆𝑆1

  𝑔𝑔𝑛𝑛𝑑𝑑 |𝐻𝐻2|𝑟𝑟1𝐿𝐿𝑒𝑒𝑓𝑓𝑓𝑓 =
2Φ2𝑚𝑚𝑡𝑡𝑒𝑒𝑛𝑛𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑𝑒𝑒

𝑟𝑟1𝑀𝑀𝑠𝑠𝑑𝑑𝑡𝑡𝑒𝑒𝑟𝑟𝑆𝑆2
 

 

Therefore, �𝐻𝐻2
𝐻𝐻1
�
𝑟𝑟1

= 2𝑆𝑆1
𝑆𝑆2

Φ2𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑚𝑚𝑜𝑜𝑜𝑜𝑏𝑏𝑜𝑜

Φ1𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑚𝑚𝑜𝑜𝑜𝑜𝑏𝑏𝑜𝑜
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5. AREAL magnets 

5.1 Introduction 
The low energy electron linear accelerator facility AREAL can be considered as the first 

phase of realization of the synchrotron light source project CANDLE in Armenia. The energy 
of the electron beam will reach ~50 𝑀𝑀𝑒𝑒𝑀𝑀 as the result of the implementation of two 1.5𝑚𝑚 long 
accelerator sections.  Bending magnets as well as corrector magnets are in use for beam 
guidance and steering. Beam focusing is realized applying solenoid and several quadrupol 
magnets in doublet and triplet arrangements.  Finally, light with specific properties will be 
produced through the periodic magnetic structure of an undulator. 

 
Fig. 5.1: Layout of the  low energy electron linear accelerator facility AREAL. 

At AREAL, the magnetic field measurements of the magnets and insertion devices is 
conducted at the Magnetic Measurements Laboratory. It is equipped with two different 
measurement benches, each one intended for a type of magnetic measurements with different 
sensors. 

Introduction to the accelerator magnets can be found in chapter 2 and Ref. [3]. 

 5.2 Dipole magnet 
As a part of the AREAL spectrometer for energy and energy spread measurements, a 

dipole magnet was designed, fabricated and tested at the CANDLE Synchrotron Research 
Institute. The energy range of the electron beam achieved just after the RF gun is 2 − 5 𝑀𝑀𝑒𝑒𝑀𝑀.  
The magnet design and geometry optimization resulted in 12𝑐𝑐𝑚𝑚 ×  12𝑐𝑐𝑚𝑚 square poles with a 
gap of 4𝑐𝑐𝑚𝑚 and a yoke size of 8𝑐𝑐𝑚𝑚 × 6𝑐𝑐𝑚𝑚. In the simulations, Steel 1008 material was used 
with properties close to the steel used in magnet fabrication. The magnet consists of two coils 
with 500 windings each. In the field measurements a magnet-probe alignment < 100µ𝑚𝑚 was 
reached. Figure 5.2 presents the mechanical layout of the simulated design and the measured 
magnetic field distribution along the pole symmetry. Measurements were taken by Hall 
probes.  
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Figure 5.3 presents simulated and measured bending field distributions along the 
electron 900 bend trajectory and the measured field in consistency with simulation results. 
 
 

 

 
Figure 5.2: AREAL dipole magnet design and measured field map of bending field component. 

 

  
Figure 5.3: Dipole magnet simulated (red) and measured (blue dots) bending field distributions 

along both horizontal axes in the center. 
As it can be seen, the difference between simulated and  measured field is less than 2% 

in the magnet region and increases at far distances from magnet edges. One can also see that 
the measured field amplitudes are smaller than expected from the simulations which is directly 
related to fabrication errors and deviations of yoke material properties. 
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Fig. 5.4: Dipole magnet(left); calculated via CST simulation and measured field (right). 
The final analysis of measured and simulated magnetic field results in a relation between 

the longitudinal momentum 𝑃𝑃𝑧𝑧 of the electrons and the bending field amplitude 𝐵𝐵0 at the pole 

centre given as 𝑃𝑃𝑧𝑧 � 
𝑀𝑀𝑒𝑒𝐺𝐺
𝑐𝑐
� =  0.029𝐵𝐵0 [ 𝑚𝑚𝑇𝑇 ]. 

To obtain the dispersive properties of this dipole magnet, a particle tracking simulation 
was performed that includes five particles with different energies with the same initial position 
(Fig. 5.5). In the simulation the particle energies are taken with 𝑑𝑑𝑑𝑑 = 0.25𝑀𝑀𝑒𝑒𝑀𝑀  and 𝑑𝑑𝑑𝑑 =
0.5𝑀𝑀𝑒𝑒𝑀𝑀 deviations from the design particle energy of 5MeV. 

 
 

Figure 5.5: Trajectories of the particles with 
different energies passing the 90° bend dipole. 
Magnet symmetry axis (red dashed), particle 

design axis (black dashed) and positions of the 
screens are presented. 

Figure 5.6: Measured hysteresis curve of the 
dipole magnet. 

 
The final analysis of the transverse phase space at 18cm distance from magnet edge 

results in a dispersion function of 𝐷𝐷 =  0.24 𝑚𝑚 and a dispersion slope 𝐷𝐷′ =  0.96 𝑟𝑟𝑔𝑔𝑑𝑑 . 
Figure 5.6 presents the measured hysteresis curve of the dipole for a maximum coil 

current of ~8𝐴𝐴. The residual(=remnant) field of the magnet is ~2𝑚𝑚𝑇𝑇 that is about 50 times 
bigger than the measured earth magnetic field of ~0.04𝑚𝑚𝑇𝑇. Finally, a magnet degauss 
procedure was developed from the measurement that is performed in three steps. 

5.3 Solenoid magnet 
The AREAL solenoid magnet design (Fig. 5.7) is modified from a DESY type solenoid. 

The magnet consists of a single coil with 20 windings and 1 cm thick iron shielding. The 
magnet length is about 6.4 cm that has cooling passes in the outer surfaces of the iron shield. 
The magnetic iron cover of the solenoid provides a return path for the magnetic field thus 
screening effectively the field in the outer space and concentrating it to the inside of the 
solenoid gap. 
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Fig. 5.7: Solenoid magnet and magnet’s measured (blue dots) and simulated (red) longitudinal field 

on axis (right). 
 

During the field measurements the magnet shows stable operation in terms of heating 
for currents up to 8A that corresponds to the peak magnetic field of ~175𝑚𝑚𝑇𝑇. Fig. 5.7 is 
presenting the measured and simulated longitudinal magnetic field. The difference between 
measured and simulated fields is less than 2%. During the field measurements, a magnet-probe 
alignment < 300µ𝑚𝑚 was achieved.  

The resulting effective field length of 39.57 𝑚𝑚𝑚𝑚 was obtained that is defined as a 
normalized integral of 𝐵𝐵𝜕𝜕2. According to Eq. (2.3), a focal length of ~85 cm is expected for the 
5 𝑀𝑀𝑒𝑒𝑀𝑀 electron beam at 8 𝐴𝐴 solenoid current. 

5.4 Corrector magnet 
A corrector magnet (Fig.5.8) was designed for trajectory steering of electron beams with 

energies up to 5 𝑀𝑀𝑒𝑒𝑀𝑀. The magnet is iron-free and its coils are optimized to provide a 
homogeneous steering field region. 

  
Figure 5.8: Iron-free steering magnet design. Figure 5.9: The steering magnetic field distribution 

on the magnet axis in case of excitation of the two 
coils generating a horizontal steering field. 
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Fig. 5.10: Corrector magnet (left); Field mapping via Hall probe over the transverse plane (right). 

 
The beam trajectory steering in horizontal and vertical planes will be provided by coil 

doublets that are arranged parallel to each other. The gap of the magnet has 50mm diameter 
and a maximum current of 4 𝐴𝐴 is assumed in each coil doublet (Fig 5.9). Each coil consists of 
480 windings in the center coil and 60 windings in both edge coils. The steering field 
distribution is presented in Figure 5.10 which will provide a maximum of ~5.6 𝑚𝑚𝑟𝑟𝑔𝑔𝑑𝑑 
integrated transverse kick to the 5𝑀𝑀𝑒𝑒𝑀𝑀 electron beam. The effective length of the steering 
field is 15.2 𝑐𝑐𝑚𝑚 and the maximum field is 𝐵𝐵0 ≈  0.6𝑚𝑚𝑇𝑇 at 4𝐴𝐴 current. The good steering field 
region is within the transverse circle of radius 8 mm that provides a magnetic field of better 
than 1% homogeneity. As a drawback, the field has a non-vanishing quadrupole component 
the integrated effect of which is, in comparison with the dipole component < 0.6%. Finally, 
one concludes that this iron-free corrector will provide a steering field with accuracy < 1% 
within the good field region of 8mm radius.   

5.5 Quadrupole magnet doublet for AREAL  
A symmetric quadrupole doublet configuration has been chosen to allow varying the 

beam spot size and its shape on the target. The symmetric quadrupole produces an optimum 
target beam spot uniformity assuming an axially symmetric input beam. 

Table 5.1: Magnets parameters 
Doublet length by Iron 165  mm 
Magnet length  60 mm 
Distance (iron to iron) 45 mm 
Distance between centers 0.105 m 
Magnet bore diameter 43 mm 
Net focal length of system at 5MeV 1.1 m 
Field gradient  0.6 T/m 
Magnet Inductance  19 mH  
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Figure 5.11: Quadrupole magnet at 

measurement laboratory. 
Figure 5.12: Horizontal field mapping via Hall 

probe over the vertical axis (right). 
 

 
Figure 5.13: The quadrupole magnet is mounted downstream to the solenoid magnet for 

beam measurements. 

6. Magnet measurements 
At AREAL, the magnetic field measurements of the magnets and insertion 

devices is conducted at the Magnetic Measurements Laboratory. It is equipped 
with two different measurement benches, each one intended for magnetic 
measurements with different sensors. 

Introduction to the accelerator magnets can be found in chapter 2 and in 
Ref. [3]. 

6.1 Equipment and tools 
The measurements of dipole, solenoid, corrector and quadrupole magnets are important 

parts of the AREAL electron facility program. The CANDLE diagnostics laboratory has 
successfully completed the high precision Magnetic Measurement Bench (MMB) that enables 
one to map the magnetic field with high accuracy. The results of these measurements agree 
well with the magnet simulations performed by the magnetic field simulation codes POISSON 
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and CST Microwave Studio. Relying on the measurement data, the magnets are constructed 
and the AREAL first electron beam was successfully obtained on 20 December 2013.  

 
Figure 6.1: Magnetic Measurement Bench; the maximum movement along the directions is 𝑥𝑥 =
40𝑐𝑐𝑚𝑚, 𝑖𝑖 = 90𝑐𝑐𝑚𝑚, 𝑧𝑧 = 14𝑐𝑐𝑚𝑚, where z is  directed along the robotic arm. The minimum step is 

10−4𝑐𝑐𝑚𝑚. 
 

The Magnetic Measurement Bench is equipped with a robotic arm carrying the 
magnetic field point sensor, a step motor, a control and a power supply unit [Fig 6.1]. It uses a 
Lake Shore Model 425 gaussmeter and 400 Series axial and transverse pick up Hall Probes as 
field sensors [http://www.lakeshore.com]. The parameters of the gaussmeter and Hall Probes 
are given below. 

Lake Shore Model 425 gaussmeter parameters: 
Field ranges from 350 mG to 350 kG, 
DC measurement resolution to 1 part of ±35,000, 
Basic DC accuracy of ±0.20%, 
DC to 10 kHz AC frequency, 
USB interface, 
Large liquid crystal display, 
Sort function (displays pass/fail message) 
Alarm with relay 
 Standard probe included  
Standard and custom probes available 
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Figure 6.2: Lake Shore Model 425 
 
 

 

Figure 6.3: Axial Probe 
 
 

Model L mm D mm 
(in) 

A mm 
(in) 

Active 
area 
mm 
(in) 

Stem 
materi
al 

Frequenc
y range 

Usable full 
scale ranges 

Corrected accuracy 
(% rdg at 250C) 

Temp 
coefficien
t (max) 
zero 

Temp 
coefficient 
(max) 
Calibration 

Contains 
temp 
sensor 

HMNA-
1904-VR 

4
± 0.125 

0.187 𝑑𝑑𝑖𝑖𝑔𝑔 
± 0.005 

0.005
± 0.003 

0.030 𝑑𝑑𝑖𝑖𝑔𝑔 Fibergl
ass 
epoxy 

DC to 10 
kHz 

HSE 
35G 350 G, 
3.5kG,35kG 

±0.2% 𝑡𝑡𝑐𝑐 30𝑘𝑘𝑘𝑘 
and 

±0.25% 30 𝑡𝑡𝑐𝑐 35𝑘𝑘𝑘𝑘 

00𝐶𝐶 𝑡𝑡𝑐𝑐  750𝐶𝐶 ±0.09𝑘𝑘/𝐶𝐶 −0.04%
/𝐶𝐶 

 
 

 

 
Figure 6.4: Transverse Probe 
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Model L mm T mm 

(in) 
W mm 
(in) 

A mm  
(in) 

Active 
area  
(in) 

Stem 
material 

Frequency 
range 

Usable full 
scale ranges 

Corrected 
accuracy (% rdg 
at 250C) 

Temp 
coefficient 
(max) zero 

Contains 
temp 
sensor 

HMMT-
6J08-VR 

8
± 0.125 

0.061 𝑚𝑚𝑔𝑔𝑥𝑥 0.18 
± 0.005 

0.15
± 0.05 

0.04 𝑑𝑑𝑖𝑖𝑔𝑔 Aluminum DC to 800 
Hz 

HSE 
35G 350 G, 
3.5kG,35kG 

±0.2% 𝑡𝑡𝑐𝑐 30𝑘𝑘𝑘𝑘 
and 

±0.25% 30 𝑡𝑡𝑐𝑐 35𝑘𝑘𝑘𝑘 

±0.09𝑘𝑘/𝐶𝐶 −0.04%/𝐶𝐶 
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PRACTICAL HOURS 
 

Task 1: Calibrate and position the Hall-probe gaussmeter. 

Position the transverse Hall-probe on the robotic arm. 

Turn on Power Supply unit, Gaussmeter, Step motor and robotic arm controller. 

Zero and check the calibration of the gaussmeter. Keep the probe away from the 
bore area of the magnet while calibrating. 

Start Mill program on the computer.  Note that, in the context of the program X 
axis goes through the magnet center, Z is vertical axis and Y is horizontal one. 

http://candle.am/design_report
http://candle.am/areal/
http://jacow.org/
http://jacow.org/
https://laacg.lanl.gov/


Task: 2 Quadrupole gradient- and calibration measurement

(a) Magnetic field measured at various current settings. (b) Fitting the gradient calibration function.

(c) Effective length measurement. (d) Beam-based alignment.

Figure 1: Examples - measurements and data analysis.

The goal is to determine the quadrupole gradients gy(IQ) = −∂By
∂x and gx(IQ) = −∂Bx

∂y (see Eq.(2.4)) as
a function of the quadrupole current IQ experimentally. The experiment consists of the following steps:

a) Set the current in the quadrupole to IQ,i, where 0A ≤ IQ,i ≤ 2.5A,

b) Place the Hall probe at the magnetic center, where the field vanishes, i.e. at the point where B(x,y)=
0,

c) Move the probe horizontally in 2 mm steps within the range (-20 mm, 20 mm) from the center. At
each horizontal position x measure and record the vertical component of the magnetic field By(x),

d) Repeat a)-c) for a different value of IQ,i. Ideally the values of IQ,i should be equidistant, separated
by a 0.5 A step, so that IQ,i={0, 0.5, 1.0, 1.5, 2.0, 2.5}A,

e) Plot the measured data as shown in the example in Fig.1a.

f) For each separate data set By(x) (each corresponding to a different IQ,i) determine the slope ∂By
∂x by

a linear fit By =
∂By
∂x (IQ,i) · x+Const,

g) As derived in Eq.(2.10) one expects a linear relation between the quadrupole gradient and cur-
rent. Determine the current calibration constant Cg by a linear regression ∂By

∂x = Cg · IQ+Const, as
illustrated in Fig.1b
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h) Repeat all steps a)-g) for the other transverse direction. For this one needs to rotate the Hall probe
manually by 90 ◦. The movement in c) should be in the vertical direction and Bx(y) has to be
measured.

Task: 3 Effective length of a quadrupole

The goal of the experiment is to determine the effective length of the quadrupole, Le f f , which in turn
affects the focal length, as shown in Eq. (2.13). For this measurement the quadrupole current is set to
a high value, e.g. IQ =2.5 A. The Hall probe is positioned off-center, e.g. at x =10 mm and y =0 mm
so that only the vertical component of the magnetic field By has to be considered. One measures the
dependence By(z) i.e. By along the longitudinal position of the Hall probe as illustrated in Fig.1c. Ideally,
one would measure over a wide longitudinal range, with the magnetic field dropping to zero at both ends,
as illustrated in the inset of Fig.1c. However, due to the mechanical limitations of the positioning arm,
only half of that range can be covered in practice. Fortunately, thanks to the symmetry of the longitudinal
distribution, this is not a problem and the effective length can be determined as follows

Le f f =
1
B0

∞∫
−∞

B(z)dz =
2
B0

z0∫
−∞

B(z)dz (1)

where z0 is the longitudinal position of the maximum of the magnetic field and B0 its maximum value.

Task: 4 Beam-based alignment

Ideally, the electron beam in an accelerator would cross a quadrupole at its magnetic center. As given by
Eq.(2.4), at the point x = 0,y = 0 the field vanishes and the beam experiences no net force. If the beam
has a slight offset (δx, δy) relative to the center of the magnetic field, i.e. when x = δx , 0,y = δy , 0, then
in addition to the focussing effect, the beam gets bent in the magnetic field B⃗ = (−g · δy, −g · δx, 0) in
accordance to Eq.(2.4). The goal of this experiment is to determine the offsets (δx, δy). In contrast to the
previous Tasks, this one will be done with electron beam (therefore beam-based) and not in the magnetic
measurement laboratory. Consider the setup sketched in Fig.1d. The electron beam passes through a
quadrupole with an effective length of Le f f and a horizontal offset of δx relative to the magnetic center.
The quadrupole is identical to the one previously characterized in the laboratory. An observation screen
located at a distance LD downstream the quadrupole can measure the horizontal position x of the beam.
For simplicity’s sake, assume only a horizontal offset δx (i.e. δy = 0) and Le f f ≪ LD. If the momentum p

of the beam is known then the bending angle α can be calculated with the help of Eq.(2.2) as follows:

α ≈
Le f f

R
=

e ·Le f f ·B
p

=
e ·Le f f ·Cg · IQ ·δx

p
(2)
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Here one makes use of the current calibration Cg, which has been determined in the previous Task. The
geometry sketched in Fig.1d yields

x = x0+Ld · tan(α) ≈ x0+Ld ·α = x0+Ld ·
e ·Le f f ·Cg · IQ ·δx

p
(3)

and hence
dx
dIQ
= Ld ·

e ·Le f f ·Cg ·δx
p

(4)

δx =
p · dx

dIQ

e ·Le f f ·LD ·Cg
(5)

Equation (5) above, suggests the following experimental procedure:

a) Set a current IQ,i through the quadrupole,

b) Measure the beam position xi on the observation screen,

c) Repeat a)-b) for a different quadrupole current until there are at least 5 measure points,

From the slope of the linear fit xi(IQ,i) and Eq.(5) determine the quadrupole offset δx. Since the screen
measurement allows for simultaneous measurement of the X and Y positions, the vertical offset can be
determined in the same way.

Task: 5 Beam energy measurement using a dipole magnet

The measurements of electron beam momentum are based on Eq.(2.2) and use a dipole magnet, which
bend the beam on a certain angle α. At AREAL a 90 ◦ bending magnet is used for this purpose. The
dipole magnet bends the electron beam, and the beam position is registered by the YAG station (see
energy spectrometer in Fig. 5.1). Thus the beam momentum can be determined by

p
[
MeV

c

]
= 0.02888 ·B [mT ] (6)

The momentum measurement together with the dipole field calibration is fully integrated in the accelerator
control system of AREAL, therefore this task requires only electron beam transport to the observation
screen and documentation of the operating conditions. Once the beam momentum has been measured,
determine the mean beam energy.
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